unit 5

exponents
 ε
 square ROOTs

5.1 Exponents and Bases
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad 2
\qquad
\qquad $\cdots-\cdots \times 1$.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

5.1 Exponents and Bases

		P o w er									
		1	2	3	4	5	6	7	8	9	10
	2										
	3										
	4										
	5										
	6										
	7										
	8										
	9										
	10										

I. Write as repeated multiplication:

1. 2^{7}
2. 10^{5}
3. $(-3)^{4}$ \qquad
4. -3^{4}
5. $\left(\frac{1}{2}\right)^{3}$
II. Write in exponential form:
6. eight cubed: \qquad
7. $(-2)(-2)(-2)(-2)(-2):$ \qquad 4. $-(10)(10)(10)(10):$ \qquad
III. Evaluate:
8. $7^{2}=$ \qquad
9. $12^{2}=$ \qquad
10. $3^{4}=$ \qquad
11. $4^{3}=$ \qquad
12. $\left(\frac{2}{5}\right)^{2}=$
13. $\left(1 \frac{3}{4}\right)^{2}=$
14. $\left(\frac{1}{2}\right)^{3}=$
15. $\left(-\frac{1}{9}\right)^{2}=$
16. $(0.8)^{2}=$ \qquad 10. $(1.2)^{2}=$ \qquad
17. $(0.13)^{2}=$ \qquad 12. $(-2)^{4}=$ \qquad
18. $-2^{4}=$ \qquad 14. $(-2)^{3}=$ \qquad
19. $-2^{3}=$ \qquad
20. $(-1)^{7}=$ \qquad
21. $(-1)^{2020}=$
22. $2^{3} \times 3^{2}=$ \qquad 19. $2^{3}+2^{5}=$
23. $5^{2}-2^{5}=$ \qquad 21. $4^{2} \div 2^{4}=$ \qquad 22. $2^{4}-2^{2}=$ \qquad
24. $(-3 \times 4)^{2}=$ \qquad 24. $3(4)^{2}=$ \qquad 25. $-3(4)^{2}=$ \qquad
25. $(3 \cdot 4)^{2}=$ \qquad 27. $-(-3 \cdot 4)^{2}=$ \qquad 28. $2(3-4)^{2}=$ \qquad
26. $-1^{2}-1^{3}=$ \qquad 30. $-\left(3^{2}-3\right)^{2}=$ \qquad
IV. Show the substitution for $m=4$ and $n=-3$, then evaluate:
27. m^{2}
28. $3 n^{2}$
29. $(3 m)^{2}$
30. $-m^{3}$
31. $(n-m)^{3}$
32. $m^{3}-n^{3}$
V. Problems and Thought-Provokers
33. $1+3=$
$1+3+5=$
$1+3+5+7=$
$1+3+5+7+9=$
$1+3+5+7+9+11=$

What is the pattern to these sums of consecutive odd numbers?

Make a conjecture about the sums of consecutive odd numbers:

Explain why this happens. Be creative
2. The same number is subtracted from each of 71 and 58 resulting in two perfect squares. What is the number?
3. If $2^{x}+3^{y}=43$, where x and y are integers, then the value of $(x+y)$ is:
4. Each of the numbers $1,2,3,4$ is substituted, in some order, for p, q, r and s. The greatest possible value for $p^{q}+r^{s}$ is:
6. In the following equations, the letters a, b, and c represent different numbers. $a^{3}=1+7$,
$3^{3}=1+7+b$, $4^{3}=1+7+c$
Find the numerical value of $a+b+c$:
7. When $\left(5^{3}\right)\left(7^{52}\right)$ is evaluated, the unit's digit is:
*VI. Just for fun... You may use a calculator for the following questions if you wish.

1. $2^{5} \cdot 9^{2}=$
2. $3^{3}+4^{4}+3^{3}+5^{5}=$ \qquad
3. $6+6+6+(6 \times 6 \times 6)+(6 \times 6 \times 6)+(6 \times 6 \times 6)=$ \qquad
4. $(3+4+0+1+2+2+2+4)^{6}=$ \qquad
5. $12^{2}+33^{2}=$ \qquad
6. What is the smallest integer greater than 1 that is both a perfect square and a perfect cube?

What is the next smallest number to have the same property?
7. $15 \times 15=$ \qquad
\qquad $35 \times 35=$ \qquad
$45 \times 45=$ \qquad $55 \times 55=$ \qquad
$65 \times 65=$ \qquad

Can you find a pattern in the squares of these types of numbers? See if it works for additional examples.

5.2 Exponent Laws

\qquad

5.2 Exponent Laws

I. Write the following as a single power. Do not evaluate!

1. $\left(9^{3}\right)\left(9^{5}\right)=$ \qquad
2. $7^{6} \cdot 7^{6}=$ \qquad
3. $\left(4^{13}\right)(4)\left(4^{5}\right)=$ \qquad
4. $\left(x^{7}\right)\left(x^{11}\right)=$
5. $w\left(w^{3}\right)\left(w^{50}\right)=$
6. $(-6)^{8}(-6)=$
7. $24^{8} \div 24^{3}=$
8. $\frac{3^{13}}{3^{8}}=$
9. $t^{23} \div t=$ \qquad
10. $5^{9} \div 5^{9}=$ \qquad
11. $2^{5} \div 2^{2}=$ \qquad 12. $\frac{\left(8^{14}\right)\left(8^{5}\right)}{8^{11}}=$
12. $\frac{11^{4}\left(11^{3} \cdot 11^{7}\right)}{11^{8}(11)}=$ \qquad

II. The Power Zero

1. $(56)^{0}=$ \qquad
2. $(-11)^{0}=$ \qquad
3. $-11^{0}=$
4. $\left(-\frac{25}{4}\right)^{0}=$ \qquad 5. $-8(92 m n)^{0}=$ \qquad
5. $3^{0}=$ \qquad
6. $4(3)^{0}=$ \qquad
7. $0^{3}-3^{0}=$ \qquad

III. Power of a Power

1. $\left(2^{3}\right)^{2}=$ \qquad
2. $\left(2^{2}\right)^{3}=$
3. $\left(7^{3}\right)^{2}=$
4. $\left[(-3)^{7}\right]^{8}=$ \qquad
5. $\left(12^{7} \times 12^{4}\right)^{3}=$
6. $\left(\frac{2^{5}}{2^{3}}\right)^{3}=$
7. $\left(n^{3}\right)^{4}=$ \qquad 8. $\left(\frac{n^{6}}{n^{2}}\right)^{3}=$
8. $\left(-x^{3}\right)^{6}=$ \qquad
\qquad 11. $\left(3 m^{2}\right)^{4}=$ \qquad
9. $(2 x y)^{5}=$ \qquad 13. $\left(\frac{3^{5} \cdot 3^{12}}{3^{2}}\right)^{3}=$ \qquad
10. Would it be correct to use the exponent laws on the following questions? If so, use them to write the answer as a single power. If not, evaluate the answer.
a) $3^{2} \times 3^{3}=$ \qquad b) $2^{4}+2^{5}=$ \qquad c) $3^{4}-3^{3}=$ \qquad
d) $2^{8} \div 2^{5}=$
e) $\left(2^{2}+2^{1}\right)^{3}=$
f) $\left(2^{6} \times 2^{3}\right)^{4}=$ \qquad

5-3 Square Roots

\qquad
\qquad $1 . x_{1}$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

5-3 Square Roots

I. Evaluate the following. Estimate only when necessary:

1. $\sqrt{49}=$ \qquad 2. $\sqrt{144}=$
2. $\sqrt{81}=$ \qquad 4. $\sqrt{0.25}=$ \qquad
3. $\sqrt{0.09}=$ \qquad 6. $\sqrt{12100}=$ \qquad 7. $\sqrt{490000}=$ \qquad
4. $\sqrt{0.0144}=$
5. Why is $\sqrt{0.00144}$ different from \#8?
6. $\sqrt{0.0121}=$ \qquad 11. $\sqrt{\frac{4}{9}}=$
7. $\sqrt{5 \frac{4}{9}}=$
8. $\sqrt{\frac{50}{72}}=$
9. $\sqrt{30}=$
10. $\sqrt{78}=$ \qquad
11. $\sqrt{649^{2}}=$ \qquad 17. $\frac{\sqrt{64}}{16}=$ 18. $\sqrt{13^{2}-5^{2}}=$
12. $\sqrt{13^{2}}-\sqrt{5^{2}}=$ \qquad 20. $\sqrt{-36}=$ \qquad 21. $-\sqrt{64}=$ \qquad
13. $\sqrt{3(-2)^{2}-(-4)}=$
14. $\sqrt{81}+\sqrt{52}=$ \qquad 25. $(\sqrt{36})(\sqrt{4})=$ \qquad 26. $\sqrt{36}+\sqrt{4}=$
15. $\sqrt{9} \cdot \sqrt{9}=$
16. $\sqrt{20} \cdot \sqrt{20}=$ 29. $\sqrt{\left(2^{-4}+3^{-2}\right)^{0}}=$
17. $\sqrt{16+9}=$ \qquad 31. $\sqrt{16-9}=$
18. $\sqrt{16 \times 9}=$
19. $\sqrt{16 \div 9}=$
20. $\sqrt{16}+\sqrt{9}=$ \qquad 35. $\sqrt{16}-\sqrt{9}=$
21. $\sqrt{16} \times \sqrt{9}=$ \qquad 37. $\sqrt{16} \div \sqrt{9}=$ \qquad

II. Problems and Thought Provokers

1. What number(s) do not have a square root? Explain why not.
2. What numbers have a whole number as their square root? List all of these numbers up to 150. You should be mentally familiar with these numbers as they occur very frequently in math.
3. A square has an area of $64 \mathrm{~cm}^{2}$, what is its perimeter?
4. Four students were trying to figure out the square-root of 42. Hewey said "the square-root of 36 is 6 , and the square-root of 49 is 7 , so the square root of 42 is most likely 6.5." Dewey said "when I punch it into the calculator, its says 6.407406." Louie said "I used a graphing calculator and the square root of 42 is 6.4070698 ." Fred said "the square root of 42 is $\sqrt{42}$." Which student gave the most accurate answer? Which student gave the best answer? What would answer would you give? Why?
5. Are there any numbers whose square root is the same as the number itself? Which number(s) are they?
6. For each statement below, tell whether it is Always, Sometimes or Never true. Explain why or provide an example why not.
a) The square root of a positive number is larger than the number.
b) The square of an even number is also even.
c) The square root of an even number is an even number.
d) The square root of a prime number is a whole number.
*7. Think about what "square root" means. What do you think "cube root" might mean. Give an example.
*8. What do you think $\sqrt{x^{16}}$ would simplify to? How can you prove your answer is correct?
*9. This chapter is called "Exponents and Square Roots", but really it could easily just be called "Exponents". Why?
Hint: $(\sqrt{9})^{2}=9=9^{1}$, thus if we think of square root as an exponent then $\left(9^{?}\right)^{2}=9^{1}$ and so by our exponent law $9^{2 \times ?}=9^{1}$ and thus $2 \times ?=1$ so $?=$ \qquad . Neat eh?

5.4 The Pythagorean Theorem

\qquad
\qquad $1 . x_{1}$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

5.4 The Pythagorean Theorem

For all questions, give answer in exact form (ie. 8 or $\sqrt{45}$), then estimate the answer to one decimal place where necessary. Be sure to show the setup of Pythagoras for each question.

1. Find the length of the missing side:
a)

b)

c)

e)

f)

2. Solve for the indicated side (more than one-step may be required).
a)

b)

18
d)

3. Applications (Be sure to draw a diagram for each question!)
a) A rectangle has a base of 6 cm and a diagonal of 10 cm , what is the height of the rectangle?
b) An 8 m ladder is placed against a wall such that the base of the ladder is 3 m from the base of the wall. How far up the wall does the ladder reach?
c) David Beckham is taking a corner kick from the south-west corner of a soccer field which measures 35 m by 120 m . If he wants to run to the north-east corner, how much shorter will his path there be if he runs directly there as opposed to running along the sideline (edge) of the field?
d) Two cars start at the same point and leave at the same time, the red car drives east at $30 \mathrm{~m} / \mathrm{s}$, while the blue car drives north at $40 \mathrm{~m} / \mathrm{s}$. How far apart will they be after 10s?
e) Juan walks from A to D to C to B and then back to A. How far has he walked?

f) The homes of Fred (F), Sandy (S), Robert (R), and Guy (G) are marked on the rectangular grid with straight lines joining them as shown. $F S=5 \mathrm{~km}, \mathrm{SG}=9 \mathrm{~km}$, and SR $=12 \mathrm{~km}$. Fred is considering four routes to visit each of his friends:
i) $\mathrm{F} \rightarrow \mathrm{R} \rightarrow \mathrm{S} \rightarrow \mathrm{G}$
ii) $\mathrm{F} \rightarrow \mathrm{S} \rightarrow \mathrm{G} \rightarrow \mathrm{R}$
iii) $\mathrm{F} \rightarrow \mathrm{R} \rightarrow \mathrm{G} \rightarrow \mathrm{S}$
iv) $\mathrm{F} \rightarrow \mathrm{S} \rightarrow \mathrm{R} \rightarrow \mathrm{G}$

What is the difference between the longest and shortest trip?

4. Will the following side lengths form a right triangle? Justify your answer.
a) $5,6,7$
b) $8,15,17$
c) $6,12,18$
5. Two sides of a right triangle are 5 and 7 . Find all possible lengths of the third side.
6. Pythagorean Triples are sets of 3 whole number side lengths that form a right triangle. For example $(3,4,5)$ is a Pythagorean Triple because $\left(3^{2}+4^{2}=5^{2}\right)$.

To make Pythagorean Triples, substitute any two positive whole numbers for m and n in the following expressions: $(m>n)$

$$
a=m^{2}-n^{2}, \quad b=2 m n, \quad c=m^{2}+n^{2}
$$

eg if $m=3$ and $n=1$, then $a=8, b=6$, and $c=10$ Find 6 more Pythagorean Triples:
1)
2)
3)

4)

5)
6)
