## **JAN 1994**

- Which conic is described by the equation  $4x^2 + 4y^2 x + y = 0$ ? 1.
  - A. circle
- B. ellipse
- C. parabola
- D. hyperbola
- What is the length of the minor axis of the ellipse  $\frac{\chi^2}{9} + \frac{y^2}{16} = 1$ ? 2.
  - A. 3

B. 4

C. 6

- D. 8
- A circle, with centre (-2, 3) passes through the point (5, -6). Determine the length of the 3. radius to 1 decimal place.
  - A. 7.6

B. 9.5

- C. 11.4
- D. 16.0
- Determine the vertex of the parabola given by the equation  $4x 8 = y^2 + 4y$ . 4.
  - A. (-1, 2)

- B. (5,2) C. (1,-2) D. (0,-4)
- A point P moves such that it is always equidistant from 2 fixed points. Identify the locus. 5.

- B. circle
- C. ellipse D. parabola
- A rectangular hyperbola with centre (2, 1) has one vertex at (2, 7). What is its equation?
  - A.  $\frac{(x-2)^2}{36} \frac{(y-1)^2}{36} = 1$

B.  $\frac{(x-2)^2}{36} - \frac{(y-1)^2}{36} = -1$ 

C.  $\frac{(x-2)^2}{49} - \frac{(y-1)^2}{49} = 1$ 

- D.  $\frac{(x-2)^2}{49} \frac{(y-1)^2}{49} = -1$
- Determine the measure of the acute angle formed by the intersection of the asymptotes of 7. the hyperbola  $\frac{x^2}{36} - \frac{y^2}{16} = 1$ . (accurate to 1 decimal place)
  - A. 47.9°
- B. 56.3°
- C. 66.7°
- D. 674°

### **JUN 1994**

- Determine the centre of the circle with a diameter whose endpoints are (-2, 7) and 8. (-4, -5).
  - A. (-3, 6)

- B. (-3, 2) C. (-3, 1) D. (-1, 6)
- What are the slopes of the asymptotes of the hyperbola  $\frac{\chi^2}{4} \frac{y^2}{\alpha} = 1$ ? 9.
  - A.  $\pm \frac{4}{9}$  B.  $\pm \frac{9}{4}$  C.  $\pm \frac{2}{3}$  D.  $\pm \frac{3}{2}$

- 10. What is the equation of the line that contains the vertices of the hyperbola  $\frac{(x-1)^2}{16} - \frac{(y+2)^2}{25} = 1$ ?
  - A. x=1

- B. x = -1 C. y = 2 D. y = -2
- 11. Every point on a conic is equidistant from the point (5, -6) and the conic contains the point (1, 9). Determine the equation of this conic.

A. 
$$(x-5)^2 + (y+6)^2 = 241$$

A. 
$$(x-5)^2 + (y+6)^2 = 241$$
  
B.  $(x+5)^2 + (y-6)^2 = 241$ 

C. 
$$(x-5)^2 + (y+6)^2 = 25$$
 D.  $(x+5)^2 + (y-6)^2 = 25$ 

D. 
$$(x+5)^2 + (y-6)^2 = 25$$

- 12. If the lengths of the major and minor axes of an ellipse are 2a and 2b respectively, then the area of the ellipse is given by  $A = \pi ab$ . Determine the area of the ellipse  $\frac{\chi^2}{16} + \frac{y^2}{36} = 1$ , accurate to 1 decimal place.
  - A. 75.4
- B. 78.5
- C. 150.8
- D. 301.6
- 13. A circle with centre (0, 0) is tangent to the line x + y = 16. Determine the equation of this circle.

- A.  $x^2 + y^2 = 32$  B.  $x^2 + y^2 = 64$  C.  $x^2 + y^2 = 128$  D.  $x^2 + y^2 = 144$
- 14. Determine the value(s) of k for which the graph of the relation  $(2+k)x^2 + (1-k^2)y^2 + x - 2y = 17$  represents a parabola.

- 15. Write in standard form and sketch a graph of the relation:  $9x^2 + y^2 54x + 4y + 49 = 0$



# **JAN 1995**

- 16. Determine the vertex of the parabola  $x = -(y-2)^2 3$ .

- A. (-3, 2) B. (-2, 3) C. (2, -3) D. (3, -2)
- 17. Determine the vertices of  $\frac{(x+2)^2}{4} \frac{(y-1)^2}{9} = -1$ .
  - A. (-2, -2) and (-2, 4)

B. (0, 1) and (-4, 1)

C. (0, -1) and (4, -1)

- D. (2, 2) and (2, 4)
- 18. A point P(x, y) moves such that it is always the same distance from the point F(0, 2) as it is from the line defined by y = -2. Identify the locus.
  - A. line

- B. circle
- C. ellipse
- D. parabola

19. Write  $9x^2 + y^2 + 36x - 9 = 0$  in standard form.

A. 
$$\frac{(x+2)^2}{\frac{13}{9}} + \frac{y^2}{13} = 1$$

B. 
$$\frac{(x+2)^2}{3} + \frac{y)^2}{27} = -1$$

C. 
$$\frac{(x+2)^2}{5} + \frac{y^2}{45} = 1$$

D. 
$$\frac{(x+2)^2}{9} + \frac{y^2}{27} = -1$$

20. Determine the distance between the vertices of the hyperbola xy = 6.

A. 
$$2\sqrt{6}$$

B. 
$$4\sqrt{6}$$

C. 
$$2\sqrt{3}$$

D. 
$$4\sqrt{3}$$

21. A circle with centre A is inscribed in the quadrant I sector of the circle  $x^2 + y^2 = 64$ . The inscribed circle has an area of 34.50 units<sup>2</sup> . B and C are points of tangency. Determine the area of the shaded region. (Accurate to 2 decimal places.)





22. A sports stadium has a semi-elliptical dome for its roof. If its maximum height is 50 m and its span is 200 m, how high is the dome at a point 72 m from the centre? (Accurate to 1 decimal place.)



### **APR 1995**

- 23. At what point(s) will the graph of  $x^2 y^2 = 16$  intersect the graph of  $x^2 + 4x + y^2 = 0$ ?
  - A. (-4,0)

B. (-4,0), (4,0)

C. (-4,0), (4,0),  $(2,2\sqrt{3})$ 

- D. (-4,0), (4,0),  $(2,2\sqrt{3})$ ,  $(2,-2\sqrt{3})$
- 24. Determine an equation for the ellipse that has vertices at (2,2) and (-10,2) and is tangent to the line v = 5.
  - A.  $\frac{(x+4)^2}{36} + (y-2)^2 = 1$

B.  $\frac{(x+4)^2}{36} + \frac{(y-2)^2}{9} = 1$ 

C.  $\frac{(x-2)^2}{9} + \frac{(y+4)^2}{36} = 1$ 

- D.  $(x-2)^2 + \frac{(y+4)^2}{36} = 1$
- 25. Determine the number of points of intersection of  $y = ax^2 + b$  and  $y = 5x^2$ , if a > 5 and b < 0.
  - A. 0

B. 1

C. 2

- D. 4
- 26. A circle is inscribed in the quadrant I sector of the circle  $x^2 + y^2 = 36$ . If *A* and *B* represent the areas of the indicated regions, determine an expression for the area of C
  - A.  $\frac{9\pi A B}{2}$  units<sup>2</sup>
  - B.  $9\pi A B$  units<sup>2</sup>
  - C.  $\frac{36\pi A B}{2}$  units<sup>2</sup>
  - D.  $36\pi A B$  units<sup>2</sup>



### JUN 1995

- 27. Give the vertex of the parabola  $x = (y+3)^2 4$ .
  - A. (-4, -3)
- B. (-4, 3) C. (4, -3) D. (4, 3)
- 28. Determine the radius of the circle  $x^2 + y^2 + 10y + 9 = 0$ .
  - A. 3

B. 4

- C.  $\sqrt{14}$
- D.  $\sqrt{34}$

29. Determine the equation of the ellipse graphed below.



B. 
$$\frac{(x-2)^2}{9} + \frac{(y-1)^2}{36} = 1$$

C. 
$$\frac{(x+2)^2}{36} + \frac{(y-1)^2}{9} = 1$$

D. 
$$\frac{(x+2)^2}{9} + \frac{(y-1)^2}{36} = 1$$



30. Determine an equation of the parabola with the vertex (-2, -6) that opens up and contains the point (0, -3)

A. 
$$y = -\frac{9}{4}(x+2)^2 + 6$$
 B.  $y = (x+2)^2 - 3$  C.  $y = (x+2)^2 - 6$  D.  $y = \frac{3}{4}(x+2)^2 - 6$ 

B. 
$$y = (x+2)^2 - 3$$

C. 
$$y = (x+2)^2 - 6$$

D. 
$$y = \frac{3}{4}(x+2)^2 - 6$$

31. A point P(x, y) moves such that it is always equidistant from the point (2, 3) and the line x = -4. Which equation represents this locus?

A. 
$$(x-2)^2 + (y-3)^2 = (x+4)^2$$

B. 
$$(x-2)^2 + (y-3)^2 = (x-4)^2$$

C. 
$$(x+2)^2 + (y+3)^2 = (x+4)^2$$

D. 
$$(x+2)^2 + (y+3)^2 = (x-4)^2$$

- 32. A rectangular hyperbola has centre (0, 0) and vertices on the y-axis. If (5, 7) and (10, k) are points on the graph of the hyperbola, etermine a value of k. (Accurate to 2 decimal places.)
  - A. 5.83
- B. 8.72

- C. 11.14
- D. 26.00
- 33. The transverse axis of a hyperbola has endpoints (-2, 2) and (10, 2). If one of the asymptotes has a slope of  $\frac{2}{3}$ , determine an equation of this hyperbola.

A. 
$$\frac{(x-4)^2}{36} - \frac{(y-2)^2}{16} = 1$$

B. 
$$\frac{(x-4)^2}{16} - \frac{(y-2)^2}{36} = 1$$

C. 
$$\frac{(x+4)^2}{36} - \frac{(y+2)^2}{16} = 1$$

D. 
$$\frac{(x+4)^2}{16} - \frac{(y+2)^2}{36} = 1$$

- 34. A hyperbola and a parabola both have x = 0 as an axis of symmetry. If (m, n) is one intersection point of these two curves, then which other point **must** also be an intersection point?

- A. (n, m) B. (m, -n) C. (-m, n) D. (-m, -n)
- 35. Determine the area of the shaded region below if the equation of the circle is  $(x-7)^2 + (y-7)^2 = 49$ . (Accurate to 2 decimal places.)
  - A. 10.52
  - B. 11.46
  - C. 27.97
  - D. 38.00



### **AUG 1995**

- 36. Determine an equation for the set of all points which are 3 times as far from the point (0, 5) as they are from the point (-1, 2).
  - A.  $3\sqrt{x^2 + (y+5)^2} = \sqrt{(x-1)^2 + (y+2)^2}$  B.  $3\sqrt{x^2 + (y-5)^2} = \sqrt{(x+1)^2 + (y-2)^2}$

  - C.  $\sqrt{x^2 + (y+5)^2} = 3\sqrt{(x-1)^2 + (y+2)^2}$  D.  $\sqrt{x^2 + (y-5)^2} = 3\sqrt{(x+1)^2 + (y-2)^2}$
- 37. A bridge over a river is supported by a parabolic arch which is 100 m wide at its base. If the maximum height of the arch is 10 m, determine which equation could represent the arch.
  - A.  $v = -0.2x^2$
- B.  $y = -0.1x^2$  C.  $y = -0.001x^2$  D.  $y = -0.004x^2$

# **JAN 1996**

- 38. Identify the conic which is described by  $9x^2 9y^2 18y 45 = 0$ .
  - A. circle
- B. ellipse
- C. parabola
- D. hyperbola
- 39. A tunnel is semi-elliptical in shape, with a maximum height of 5 m and a maximum width of 12 m. Determine the height of the tunnel at point A which is 4 m from the centre of C.
  - A. 1.67 m
  - B. 3.33 m
  - C. 3.73 m
  - D. 4.71 m



40. A point P moves such that it is always the same distance from the point (4, 4) as it is from the line x = 2. Find an equation of the locus.

A. 
$$(x-4)^2 + (y-4)^2 = (x-2)^2$$

B. 
$$(x+4)^2 + (y+4)^2 = (x+2)^2$$
  
D.  $(x+4)^2 + (y+4)^2 = (y+2)^2$ 

C. 
$$(x-4)^2 + (y-4)^2 = (y-2)^2$$

D. 
$$(x+4)^2 + (y+4)^2 = (y+2)^2$$

41. Determine the equations of the asymptotes of the hyperbola defined by  $\frac{x^2}{16} - \frac{(y+2)^2}{25} = 1$ .

A. 
$$\pm \frac{4}{5}x + 2$$
 B.  $\pm \frac{4}{5}x - 2$  C.  $\pm \frac{5}{4}x + 2$  D.  $\pm \frac{5}{4}x - 2$ 

B. 
$$\pm \frac{4}{5}x - 2$$

C. 
$$\pm \frac{5}{4}x + 2$$

D. 
$$\pm \frac{5}{4}x - 2$$

42. All the points on a line are equidistant from the points  $P(x_1, y_1)$ , and  $Q(x_2, y_2)$ . Determine the slope of this line.

A. 
$$-\frac{x_2 - x_1}{y_2 - y_1}$$
 B.  $-\frac{y_2 - y_1}{x_2 - x_1}$  C.  $\frac{x_2 - x_1}{y_2 - y_1}$  D.  $\frac{y_2 - y_1}{x_2 - x_1}$ 

B. 
$$-\frac{y_2-y_1}{x_2-x_1}$$

C. 
$$\frac{x_2 - x_1}{y_2 - y_1}$$

D. 
$$\frac{y_2 - y_1}{x_2 - x_1}$$

43. A circular arch of a footbridge rises 2 m at the centre. If the horizontal length L of the footbridge is the same as the radius of the circle, calculate the value of L. (Accurate to at least two decimal places.)



## **APR 1996**

- 44. An ellipse is defined by  $8x^2 + 4y^2 = p$ , and its major axis is 6 units long. Find the value of
  - A. 12

B. 24

C. 36

D. 72

# **IUN 1996**

- 45. Determine the centre of the circle that has (-8, 5) and (6, -1) as the endpoints of a diameter.

- A. (-7, 3) B. (-2, 4) C. (-1, 2) D. (7, -3)

- 46. What is the vertex of the parabola  $x = -2(y 8)^2 + 5$ ?
  - A. (-5, -8) B. (-5, 8) C. (5, -8)
- D. (5.8)
- 47. Determine the slopes of the asymptotes of the hyperbola  $\frac{x^2}{36} \frac{y^2}{100} = 1$ .
  - A.  $\pm \frac{3}{5}$
- B.  $\pm \frac{9}{25}$  C.  $\pm \frac{5}{3}$  D.  $\pm \frac{25}{9}$

- 48. Change to standard form:  $2x^2 3y^2 12x 6 = 0$ 
  - A.  $\frac{(x-3)^2}{12} \frac{y^2}{8} = 1$

B.  $\frac{(x-3)^2}{\frac{15}{2}} - \frac{y^2}{5} = 1$ 

C.  $\frac{(x-3)^2}{6} - \frac{y^2}{4} = -1$ 

- D.  $\frac{(x-6)^2}{21} \frac{y^2}{14} = 1$
- 49. A point P(x, y) moves in a path that is parallel to the graph of the relation 8x 4y = 7 and passes through (-3, 5). Determine an equation of this locus.
  - A. y = 2x + 11

- B. y = 2x 11 C. y = -2x + 11 D. y = -2x 11
- 50. A circle with centre (2, k) is tangent to the lines x = -4 and y = 2. Determine all possible values of k.

  - A. k = -4 or 8 B. k = -4 or 6 C. k = -6 or 8 D. k = 6 or 8
- 51. Determine the shortest distance from the point (8, 6) to the circle  $x^2 + y^2 = 5$ . (Accurate to two decimal places.)
  - A. 5.00
- B. 7.76
- C. 8.32
- D. 8.66

### **AUG 1996**

- 52. Determine all values of the constant k such that the following hyperbola will have a horizontal transverse axis.  $2x^2 - 3y^2 + 18y - k = 0$ 
  - A. k < -27
- B. k > -27
- C. k < 27
- D. k > 27

53. A circular arch of a footbridge spans a horizontal distance of 60 m and rises 10 m in the centre. Determine the radius of the circle.



- A. 30 m
- B. 40 m
- C. 50 m
- D. 60 m
- 54. A rock is kicked off a vertical cliff and falls in a parabolic path to the water below. The cliff is 50 m high and the rock hits the water 20 m from the base of the cliff. What is the horizontal distance of the rock from the cliff face when the rock is at a height of 10 m above the water? (Accurate to at least 2 decimal places.)

# JAN 1997

55. Determine an equation of the circle with centre (3, -2) and radius 4.

A. 
$$(x-3)^2 + (y+2)^2 = 4$$

A. 
$$(x-3)^2 + (y+2)^2 = 4$$
  
B.  $(x+3)^2 + (y-2)^2 = 4$ 

C. 
$$(x+3)^2 + (y-2)^2 = 16$$
 D.  $(x-3)^2 + (y+2)^2 = 16$ 

D. 
$$(x-3)^2 + (y+2)^2 = 16$$

- 56. Which conic is represented by the equation  $4x^2 4y^2 + 8x 24y 9 = 0$ ?
  - A. circle
- B. ellipse
- C. parabola
- D. hyperbola
- 57. Determine an equation of a rectangular hyperbola with centre at (-2, 0) and one vertex at (4, 0).

A. 
$$(x-2)^2 - y^2 = 16$$

B. 
$$(x+2)^2 - y^2 = 16$$

A. 
$$(x-2)^2 - y^2 = 16$$
 B.  $(x+2)^2 - y^2 = 16$  C.  $(x-2)^2 - y^2 = 36$  D.  $(x+2)^2 - y^2 = 36$ 

D. 
$$(x+2)^2 - y^2 = 36$$

58. Change the following equation to standard form.  $2x^2 + y^2 - 12x - 10 = 0$ 

A. 
$$\frac{(x+3)^2}{4} + \frac{y^2}{8} = 1$$

B. 
$$\frac{(x-3)^2}{4} + \frac{y^2}{8} = 1$$

C. 
$$\frac{(x+3)^2}{14} + \frac{y^2}{28} = 1$$

A. 
$$\frac{(x+3)^2}{4} + \frac{y^2}{8} = 1$$
 B.  $\frac{(x-3)^2}{4} + \frac{y^2}{8} = 1$  C.  $\frac{(x+3)^2}{14} + \frac{y^2}{28} = 1$  D.  $\frac{(x-3)^2}{14} + \frac{y^2}{28} = 1$ 

- 59. Determine the value of k (k > 0) so that the conjugate axis of the hyperbola  $x^2 \frac{y^2}{k} = 1$  is 2 units longer than the minor axis of the ellipse  $\frac{x^2}{16} + \frac{y^2}{9} = 1$ .
  - A. 8

B. 10

C. 16

- D. 25
- 60. A parabola is drawn within rectangle ABCD with its vertex at the midpoint AB. PS is parallel to AB. If AB = 80, BC = 60, and AP = 20, determine the length of QR. (Accurate to one decimal place.)
  - A. 45.6
  - B. 46.2
  - C. 48.3
  - D. 49.7



61. A point P moves such that it is always equidistant from the point F (2, 5) and the line given by y = 1. Find an equation of this locus in standard form, and graph the relation on the grid below.



62. A function is defined by the equation  $f(t) = t^2 + 6t + 7$ . Sketch the graph of f(x) + f(y) = 0.



APR 1997

- 63. Which statement below best describes the graph of  $x^2 y^2 = 0$ ?
  - A. no graph exists

B. a single line

C. a single point

D. two intersecting lines

JUN 1997

- 64. Which conic is represented by the equation  $4x^2 2y^2 x + y 7 = 0$ ?
  - A. circle
- B. ellipse
- C. parabola D. hyperbola

65. Which graph best illustrates  $\frac{(x-3)^2}{9} - \frac{(y+1)^2}{25} = 1$ ?









66. Determine the range of  $\frac{(x-3)^2}{16} + \frac{(y+2)^2}{25} = 1$ .

A. 
$$-7 \le y \le 3$$
 B.  $-3 \le y \le 7$  C.  $-7 \le x \le 1$  D.  $-1 \le x \le 7$ 

B. 
$$-3 \le v \le 7$$

C. 
$$-7 < x < 1$$

D. 
$$-1 \le x \le 7$$

67. Determine an equation of the line tangent to the circle  $(x-5)^2 + (y+12)^2 = 169$  at the point (0, 0)

A. 
$$y = \frac{5}{12}x$$

B. 
$$y = \frac{12}{5}x$$

C. 
$$y = -\frac{5}{12}x$$

B. 
$$y = \frac{12}{5}x$$
 C.  $y = -\frac{5}{12}x$  D.  $y = -\frac{12}{5}x$ 

68. The cross-section of a drainage canal is semi-elliptical in shape, measuring 30 m across and 8 m deep at its deepest point. If the depth of water in the canal is 3 m, determine the width of the water surface.

