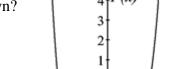
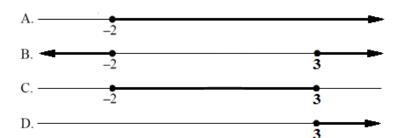

# **JAN 1991**

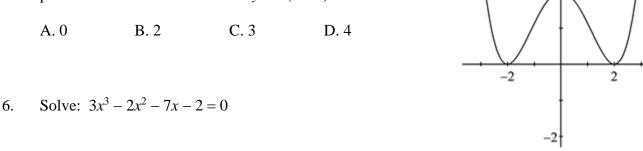
Which one of the following functions could describe the graph illustrated? 1.




- A. f(x) = (x-2)(x+1)(x+2)


- B. f(x) = -(x-2)(x+1)(x+2)C. f(x) = (x+2)(x-1)(x-2)D. f(x) = -(x+2)(x-1)(x-2)

- 2. If 2x + 1 is a factor of a polynomial P(x), which of the following must have a value of zero?
  - A. *P*(1)


- B. P(-1) C.  $P\left(\frac{1}{2}\right)$  D.  $P\left(-\frac{1}{2}\right)$
- Which of the following approximates the zeros of the function shown? 3.



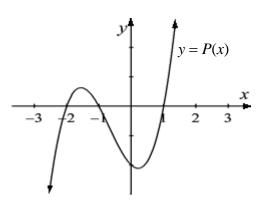
- A. -2.2, 1.6
- B. -1.8, 1.6
- C. -2.2, -2, 1.6
- D. -1.8, -2, 1.6
- Which graph below illustrates the solution set for the inequality  $(x+2)(x-3)^2 \ge 0$ ? 4.

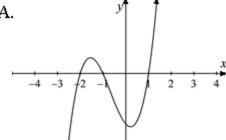


Given the graph of the function y = P(x), how many 5. positive zeros does the function y = P(x - 2) - 1 have?

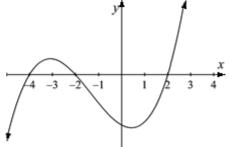


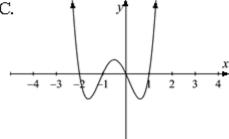
## **JUNE 1991**


- Which of the following is a possible root of the equation  $4x^4 + 2x^3 + kx + 7 = 0$ , where k is an integer?
  - A. 2
- B. 4
- C.  $\frac{7}{2}$  D.  $\frac{2}{7}$
- Given a polynomial P(x), what condition must be true for x-2 to be factor of P(x)? 8.
  - A. P(2) = 0
- B. P(-2) = 0
- C. P(x) = 2 D. P(x) = -2
- What is the quotient when  $5x^3 6x^2 + 64$  is divided by x + 2? 9.
  - A.  $5x^2 + 4x + 8$

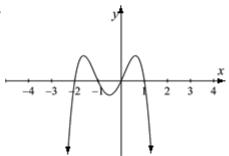

B.  $5x^2 - 16x + 32$ 

C.  $5x^2 + 4x + 72$ 


- D.  $5x^2 16x + 96$
- Select a cubic equation with roots -1, 1 and  $\frac{2}{3}$ : 10.
  - A.  $2x^3 + 3x^2 2x 3$
- B.  $2x^3 3x^2 2x + 3$
- C.  $3x^3 + 2x^2 3x 2$
- D.  $3x^3 2x^2 3x + 2$


Given the graph of y = P(x), which of the following best represents y = xP(x)?






В.





D.



# **JAN 1992**

If x + 7 is a factor of a polynomial p(x), which of the following must be true?

A. 
$$p(x) = 0$$

B. 
$$p(7) = 0$$

C. 
$$p(-7) = 0$$

D. 
$$p(x) = -7$$

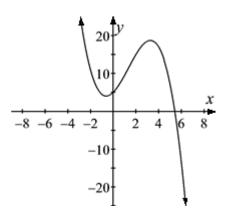
Using the Rational Zero Theorem, determine all possible rational roots of  $2x^3 + x^2 - 5x + 3 = 0$ . 13.

A. 
$$\pm 1$$
,  $\pm 2$ 

B. 
$$\pm 1$$
,  $\pm 2$ ,  $\pm 3$ 

B. 
$$\pm 1$$
,  $\pm 2$ ,  $\pm 3$  C.  $\pm 1$ ,  $\pm \frac{1}{2}$ ,  $\pm \frac{3}{2}$ ,  $\pm 3$  D.  $\pm 1$ ,  $\pm \frac{1}{3}$ ,  $\pm \frac{2}{3}$ ,  $\pm 2$ 

D. 
$$\pm 1, \pm \frac{1}{3}, \pm \frac{2}{3}, \pm 2$$


What is the remainder when  $x^{21} - 1$  is divided by x + 1? 14.

$$C. -1$$

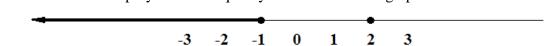
What is the minimum degree of the polynomial function shown?







Which of the following is a factor of  $x^3 + 5x^2 + 2x - 8$ ?


A. 
$$x^2 + 6x + 8$$
 B.  $x^2 + 3x + 2$  C.  $x - 2$  D.  $x - 4$ 

B. 
$$x^2 + 3x + 2$$

C. 
$$x - 2$$

D. 
$$x - 4$$

Determine a polynomial inequality whose solution is graphed below:



A. 
$$(x-1)(x+2)^2 \le 0$$

B. 
$$(x+1)(x-2)^2 \le 0$$

C. 
$$(x+1)(x-2)^2 \ge 0$$

D. 
$$(x-1)(x-2)^2 \ge 0$$

Determine all real roots of the equation  $x^3 + x^2 - 5x - 5 = 0$ . 18.

# **JUNE 1992**

Let p(x) be a polynomial such that p(-3) = 0. Which of the following must be a factor of p(x)?

B. 
$$x - 3$$

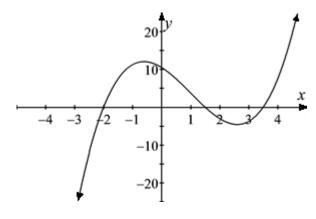
B. 
$$x-3$$
 C.  $x+3$  D.  $x^2-9$ 

D. 
$$x^2 - 9$$

Determine all possible rational roots of  $2x^3 - 5x^2 + 3x - 5 = 0$ . 20.

A. 
$$\pm 1$$
,  $\pm 2$ 

B. 
$$\pm 1$$
,  $\pm 5$ 


C. 
$$\pm 1, \pm 5, \pm \frac{1}{2}, \pm \frac{5}{2}$$

B. 
$$\pm 1, \pm 5$$
 C.  $\pm 1, \pm 5, \pm \frac{1}{2}, \pm \frac{5}{2}$  D.  $\pm 1, \pm 2, \pm \frac{1}{5}, \pm \frac{2}{5}$ 

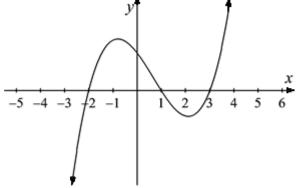
21. Estimate the real zeros of the function shown:



C. 
$$2, -1.5, -3.5$$



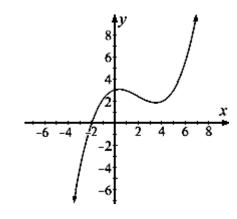
22. Determine the remainder when  $p(x) = x^{28} - 2x^5 + 3$  is divided by x + 1.


23. Using the graph of the polynomial function f(x) shown, determine all values of x such that f(x+3) > 0.

A. 
$$-5 < x < -2 \text{ or } x > 0$$

B. 
$$x < -5$$
 or  $-2 < x < 0$ 

C. 
$$-2 < x < 1$$
 or  $x > 3$ 


D. 
$$1 < x < 4 \text{ or } x > 6$$



24. A polynomial function p(x), of degree 3, has the real zeros -2, 1 and 4, and a y-intercept of 24. Determine the value of p(6).

# **JAN 1993**

- 25. Determine a real zero of the function shown:
  - A. -2
- B. 2
- C. 3
- D. 4



- 26. Determine all possible rational roots of  $6x^3 5x^2 7x 3 = 0$ .
  - A.  $\pm 1, \pm 3$

B.  $\pm 1, \pm 2, \pm 3, \pm 6$ 

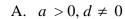
C.  $\pm \frac{1}{3}, \pm \frac{2}{3}, \pm 1, \pm 2, \pm 3, \pm 6$ 

- D.  $\pm \frac{1}{6}, \pm \frac{1}{3}, \pm \frac{1}{2}, \pm 1, \pm \frac{3}{2}, \pm 3$
- Determine the remainder if  $x^3 2x^2 + 3x 7$  is divided by x + 1. 27.
  - A. -13
- В. -9
- C. -5
- D. 5

- Solve:  $x^3 + 5x^2 + 6x = 0$ 28.
- A. -2, -3 B. 1, -6 C. 0, -2, -3 D. 0, 1, -6
- Determine a polynomial equation that has roots  $\pm 3$  and 2.
  - A.  $x^3 2x^2 9x + 18 = 0$
- B.  $x^3 + 2x^2 9x 18 = 0$
- C.  $x^3 + 2x^2 9x + 18 = 0$  D.  $x^3 2x^2 + 9x 18 = 0$
- How many real roots are there for the polynomial equation  $x(x^2 4)(x + 3)(x^2 + 5) = 0$ ? 30.
  - A. 3
- B. 4
- C. 5
- D. 6
- Graph the solution of the inequality for  $(x-3)(x+1)(x-1) \ge 0$ 31.
  - A.



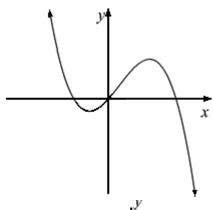



D.



- -i

1


If the graph of the polynomial function shown is of the form  $y = ax^3 + bx^2 + cx + d$  (where a, b, c, and d are constants), what are the conditions on a and d?



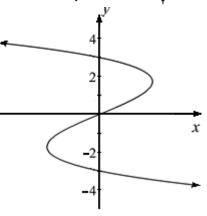
B. 
$$a > 0, d = 0$$

C. 
$$a < 0, d \neq 0$$

D. 
$$a < 0, d = 0$$



## **JUNE 1993**


33. Determine a possible equation of the inverse of the relation shown.

A. 
$$y = x^3 - 3x$$

B. 
$$y = 3x - x^3$$

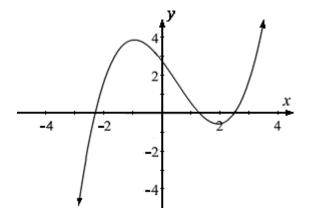
C. 
$$y = x^3 - 9x$$

D. 
$$y = 9x - x^3$$



34. If a polynomial p(x) is divided by x + 5, what is the remainder?

A. 
$$p(-5)$$
 B.  $p(5)$ 


B. 
$$p(5)$$

C. 
$$p(x-5)$$

C. 
$$p(x-5)$$
 D.  $p(x+5)$ 

Estimate the real zeros of the function shown: 35.

B. 
$$2.3, -1.3, -2.5$$



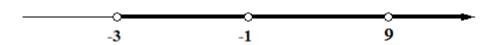
Determine a polynomial equation that has roots  $\sqrt{2}$ ,  $-\sqrt{2}$  and 1. 36.

A. 
$$x^3 - x^2 - 4x + 4 = 0$$

B. 
$$x^3 + x^2 - 4x - 4 = 0$$

C. 
$$x^3 + x^2 - 2x - 2 = 0$$

D. 
$$x^3 - x^2 - 2x + 2 = 0$$


Determine the remainder when  $6x^3 - 11x^2 + 14x - 5$  is divided by  $2x^2 - 7x + 3$ .

A. 
$$-107x - 53$$

A. 
$$-107x - 53$$
 B.  $-107x + 43$  C.  $40x - 20$ 

$$C = 40x - 20$$

What is the minimum degree of a polynomial inequality whose solution is shown below?

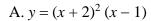


- A. 3
- B. 4
- C. 5
- D. 6

39. Solve:  $2x^3 + 3x^2 - 11x - 6 = 0$ 

## **JAN 1994**

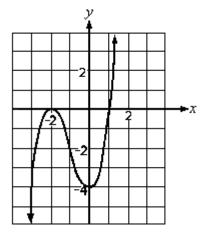
40. According to the Rational Root Theorem, what are the possible rational roots of  $2x^4 + 3x^2 - 7x + 3 = 0$ ?


A. 
$$\pm 1$$
,  $\pm 3$ 

B. 
$$\pm 1, \pm 2, \pm \frac{1}{3}, \pm \frac{2}{3}$$

C. 
$$\pm 1, \pm 3, \pm \frac{1}{2}, \pm \frac{3}{2}$$

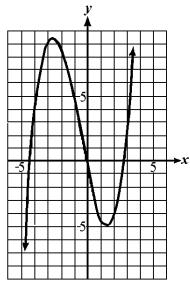
A. 
$$\pm 1, \pm 3$$
 B.  $\pm 1, \pm 2, \pm \frac{1}{3}, \pm \frac{2}{3}$  C.  $\pm 1, \pm 3, \pm \frac{1}{2}, \pm \frac{3}{2}$  D.  $\pm 1, \pm 2, \pm 3, \pm \frac{1}{2}, \pm \frac{3}{2}$ 


Which equation could represent the following graph? 41.

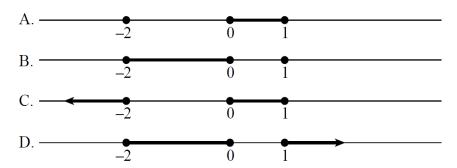


B. 
$$y = (x + 2)^2 (x + 1)$$

C. 
$$y = (x-2)^2 (x-1)$$


D. 
$$y = (x-2)^2 (x+1)$$




- Determine the quotient when  $x^3 2x^2 9$  is divided by x 3. 42.
- A.  $x^2 + 5x + 15$  B.  $x^2 + x 6$  C.  $x^2 5x + 6$  D.  $x^2 + x + 3$
- What value of k would make x + 2 a factor of  $2x^3 5x^2 2kx + 8$ ? 43.
  - A. –7
- B. -1
- C. 1
- D. 7

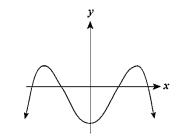
44. From the graph of y = f(x) shown, find the approximate solutions to f(x) = 2.

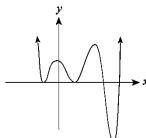




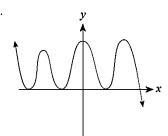
45. Determine the graph of the solution set of the inequality  $x(x-1)^n (x+2)^m \le 0$ , if n is an even positive integer and m is an odd positive integer.



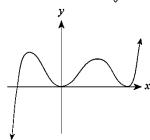

46. Solve: 
$$2x^3 - x^2 - 8x + 4 = 0$$


## **JUNE 1994**

- 47. According to the Rational Root Theorem, which one of the following is a possible root of the equation  $8x^4 + 19x^3 13x^2 + 7x 3 = 0$ ?
  - A. 2
- B. 3
- C. 4
- D. 8


Which graph could represent a polynomial function of degree 5?








C.

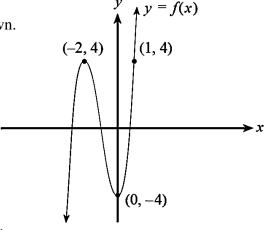


D.



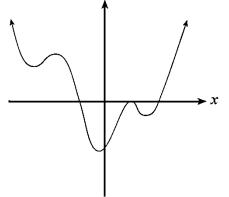
- When  $4x^2 + 2kx 5$  is divided by x + 2 the remainder is 3. What is the value of k? 49.
  - A. -6
- В. –2
- C. 2

- Solve:  $x^3 2x^2 5x + 6 = 0$ 50.


- 1, 2, -3 B. 1, -2, 3 C. -1, 2, -3 D. -1, -2, 3
- Determine the remainder when  $p(x) = 4x^3 6x^2 + 4x 3$  is divided by 2x 1. 51.
  - A. -7
- B. –4
- C. –3
- D. -2
- Determine a polynomial equation that has roots of  $\sqrt{3}$ ,  $-\sqrt{3}$  and 2. 52.
  - A.  $x^3 2x^2 3x + 6 = 0$
- B.  $x^3 + 2x^2 3x 6 = 0$
- C.  $x^3 2x^2 9x + 18 = 0$
- D.  $x^3 + 2x^2 9x 18 = 0$
- Which polynomial inequality has the solution -3 < x < -2 or x > 1? 53.
  - A. (x+3)(x+2)(x-1) < 0
- B. (x+3)(x+2)(x-1) > 0
- C. (x-3)(x-2)(x+1) < 0
- D. (x-3)(x-2)(x+1) > 0

The graph of a cubic polynomial function, y = f(x), is shown. 54. Determine the equation of y = f(x) - 4.




 $\mathbf{A} y = f(x)$ 

- A.  $y = (x + 2)^2(x + 1)$
- B.  $y = (x + 2)^2(x 1)$
- C.  $y = 2(x+2)^2(x+1)$
- D.  $y = 2(x + 2)^2(x 1)$



## **JAN 1995**

- 55. Determine the minimum degree of the polynomial function shown.
  - A. 3
- B. 4
- C. 5
- D. 6



- If  $p(x) = x^3 3x^2 + kx + 1$ , determine k if p(3) = -5.
  - A. -12
- B. -2
- C. 4
- D. 16
- Determine all real roots of the equation  $(x^2 4)(x^2 + 9)(x 5)^2 = 0$ . 57.
  - A. 2, 3, 5
- B.  $\pm 2, 5$
- C.  $\pm 2, \pm 3, 5$  D.  $\pm 2, \pm 3, \pm 5$
- The polynomial equation  $x^3 ax^2 + bx c = 0$ , where a, b and c are integers, has 6 as one of its 58. roots. According to the Rational Root Theorem, which of the following could be a value of c?
  - A. 2
- B. 3
- C. 9
- D. 18
- Determine the quotient and remainder:  $(t^4 + 3t^3 + 5t^2 + 21t 14) \div (t^2 + 3t 2)$ 59.
  - A. quotient:  $t^2 + 7$ , remainder: 0
- B. quotient:  $t^2 + 7$ , remainder: -28
- C. quotient:  $t^2 + 3$ , remainder: 12t 8 D. quotient:  $t^2 + 3$ , remainder: 30t 20
- Determine the remainder when  $x^{39} 3x^{15} 2x + 1$  is divided by x 1. 60.
  - A. -3
- B. -1
- C. 1
- D. 5

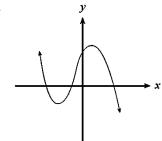
- 61. Solve the inequality:  $x(x-2)(x^2-4) < 0$ 

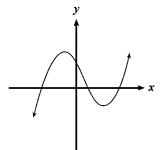
  - B. -2 0 2

  - D.  $\leftarrow \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$
- 62a. A sheet of paper 12 cm long and 8 cm wide is used to make a box with no lid. Equal squares of side length x cm are cut from each of the corners and the sides are folded up to make the box. Which of the following expresses the volume of the box?
  - A. V(x) = x(12 + x)(8 + x)

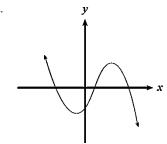
B. V(x) = x(12 - x)(8 - x)

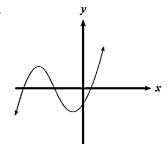
C. V(x) = x(12 + 2x)(8 + 2x)


- D. V(x) = x(12 2x)(8 2x)
- 62b. A square piece of cardboard 10 cm by 10 cm will have equal squares with sides of length x cm cut from each corner. The sides will then be folded up to create a box with no top. Determine the value of x that will give the box a maximum volume.


# **JUNE 1995**

- 63. If x + 8 is a factor of the polynomial P(x), which of the following must be true?
  - A. P(-8) = 0
- B. P(8) = 0
- C. P(x) = 8
- D. P(x) = -8
- 64. What is the maximum number of real roots that a polynomial equation can have if its degree is 6?
  - A. 3
- B. 5
- C. 6
- D. 7


- According to the Rational Zero Theorem, which number is a possible zero of the function  $f(x) = 6x^3 + 7x^2 - 3x + 4$ ?
  - A.  $-\frac{3}{2}$  B.  $\frac{1}{4}$  C.  $\frac{1}{3}$
- D. 3
- Determine the remainder when  $2x^4 + 4x^3 5x^2 + 8$  is divided by x 2.
  - A. -12
- B. 18
- C. 30
- D. 52
- Which graph is the best representation of  $y = ax^3 + bx^2 + cx 24$  where a > 0? 67.








C.





- Determine all the real zeros of the function  $P(x) = 2x(x^2 + 9)(x^2 2)$ .
  - A.  $0, \pm \sqrt{2}$
- B.  $0, \pm 3$
- C.  $0,\sqrt{2}, 3$  D.  $0,\pm\sqrt{2}, \pm 3$
- Solve the inequality:  $(x + 2)^2(x 2)(x 4) < 0$

- A. x < -2 B. -2 < x < 4 C. 2 < x < 4 D. x < 2 or x > 4

70. The graph of the function f(x) is shown. If g(x) = 3 f(x), determine the zeros of g(x).



B. -6, 6, 12

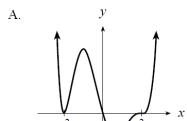
D. -2, 3

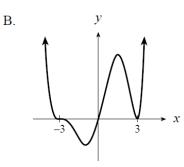


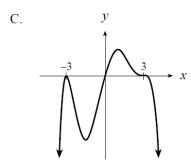
## **JAN 1996**

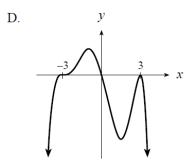
71. According to the Rational Root Theorem, determine all possible rational roots of  $3x^3 - 8x^2 + 16x - 4 = 0$ .

A. 
$$\pm 1, \pm 3$$


B. 
$$\pm 1, \pm 2, \pm 4$$

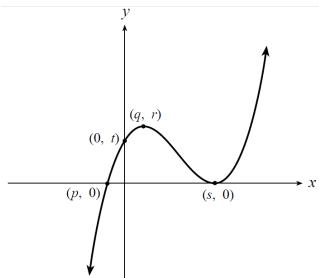

C. 
$$\pm 1, \pm \frac{1}{2}, \pm \frac{1}{4}, \pm 3, \pm \frac{3}{2}, \pm \frac{3}{4}$$


D. 
$$\pm 1, \pm \frac{1}{3}, \pm 2, \pm \frac{2}{3}, \pm 4, \pm \frac{4}{3}$$


- 72. If p(x) is a polynomial function where p(-2) = 5, then which of the following could not be a zero of this function?
  - A. -5
- B. -2
- C. 2
- D. 5
- 73. Find the remainder when  $x^3 2x^2 + 5$  is divided by  $x^2 + x 1$ .
  - A. 4
- B. 2x + 2
- C. 2x + 4
- D. 4x + 2
- 74. Determine the value of k such that x + 2 is a factor of the polynomial  $2x^3 + 5x^2 + kx 12$ .
  - A. -12
- B. -4
- C. 4
- D. 12

75. Which graph best represents  $y = -x(x+3)^2 (x-3)^3$ ?









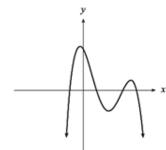

76. Given that p(x) and f(x) are polynomial functions such that p(x) = x f(x) + c, determine c if the graph of p(x) is shown.



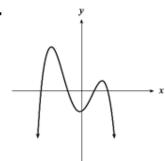


# **JUNE 1996**

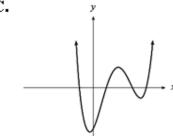
- 77. If the polynomial p(x) is divided by x 6, which of the following represents the remainder?
  - A. *p*(6)
- B. *p*(–6)
- C. p(x) + 6
- D. p(0)
- 78. Determine the value of k if 2 is a zero of the function  $p(x) = x^3 7x^2 + kx + 12$ .
  - A. k = -16
- B. k = 4
- C. k = 5
- D. k = 16


- 79. Determine the quotient when  $x^3 12x^2 + 9x 5$  is divided by x 3.
- A.  $x^2 9x 16$  B.  $x^2 9x 18$  C.  $x^2 15x + 54$  D.  $x^2 + 9x + 36$
- If x + 4 is a factor of the polynomial  $mx^3 11x^2 10x + n$ , where m and n are integers, 80. according to the Rational Root Theorem, which of the following could be a value for n?
  - A. 2
- B. 6

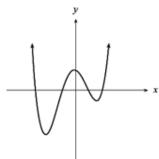
- C. 8
- D. 10


- Solve:  $x^3 4x^2 > 12x$ 81.
  - A. -2 < x < 6

- B. x < -2 or x > 6
- C. -2 < x < 0 or x > 6
- D. -6 < x < 0 or x > 2
- Which graph is a possible representation of  $y = ax^4 + bx^3 + cx 6$ , where a is a negative integer? 82.







В.



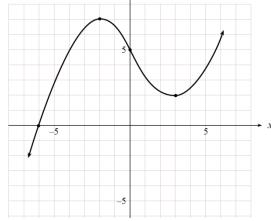
C.



D.



- Determine a polynomial equation that has the following roots: 2,  $\pm \sqrt{5}$ 83.
  - A.  $x^3 + 2x^2 5x 10 = 0$
- B.  $x^3 2x^2 + 5x 10 = 0$
- C.  $x^3 2x^2 5x + 10 = 0$
- D.  $x^3 + 2x^2 + 5x + 10 = 0$


The graph of the cubic polynomial function p(x) is given below. Which of the following functions must have 3 unequal real zeros?



B. 
$$p(x) - 3$$

C. 
$$p(x-3)$$

D. 
$$p(x-7)$$



#### **JAN 1997**

85. If x + 4 is a factor of the polynomial p(x), then which of the following must be true?

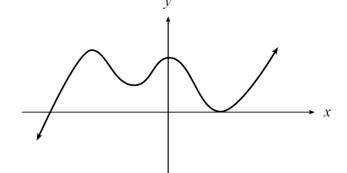
A. 
$$p(-4) = 0$$

B. 
$$p(4) = 0$$

A. 
$$p(-4) = 0$$
 B.  $p(4) = 0$  C.  $p(0) = -4$  D.  $p(0) = 4$ 

D. 
$$p(0) = 4$$

According to the Rational Root Theorem, which number could not be a root of the equation  $4x^{3} + kx^{2} + 3x - 3 = 0$ , where k is an integer?


B. 
$$-1$$
 C.  $\frac{4}{3}$  D.  $\frac{3}{2}$ 

D. 
$$\frac{3}{2}$$

What is the minimum degree of the polynomial function graphed below? 87.





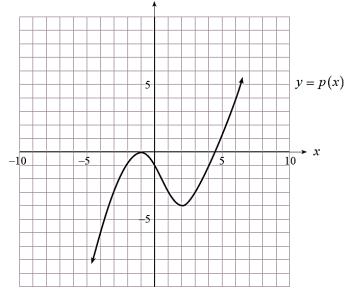


- When  $x^3 + x^2 kx 5$  is divided by x 2, the remainder is 1. Find the value of k. 88.
  - A. 3
- B. 3.5
- C. 4.5

- D. 5
- Determine a polynomial equation that has the roots  $\pm 2, \pm \sqrt{7}$ . 89.

A. 
$$x^4 - 11x^2 + 28 = 0$$

B. 
$$x^4 + 11x^2 + 28 = 0$$


C. 
$$x^4 - 9x^2 + 14 = 0$$

D. 
$$x^4 + 9x^2 + 14 = 0$$

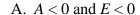
- Find the remainder for the following division.  $x^2 + 2x 4 \sqrt{x^4 + 2x^3 3x^2 + 2x + 6}$ 
  - A. 2
- B. 10
- C. 4x + 2
- D. 16x 22
- Determine the real root(s):  $2x^3 3x^2 + 6x 9 = 0$ 91.
- A.  $-\frac{3}{2}$  B.  $\frac{3}{2}$  C.  $-\frac{3}{2}, \pm \sqrt{3}$  D.  $\frac{3}{2}, \pm \sqrt{3}$
- 92. Use the graph of the function y = p(x) shown to solve the equation p(x-5) + 6 = 0.



D. 4



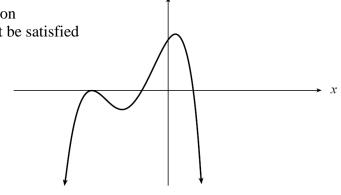
### **JUNE 1997**


According to the Rational Root Theorem, list all possible rational roots of  $2x^8 - 5x^3 + 6x^2 - 4 = 0$ .

B. 
$$\pm \frac{1}{2}, \pm 1, \pm 2, \pm 4$$

C. 
$$\pm \frac{1}{4}, \pm \frac{1}{2}, \pm 1, \pm 2$$

A. 
$$\pm 1$$
,  $\pm 2$ ,  $\pm 4$  B.  $\pm \frac{1}{2}$ ,  $\pm 1$ ,  $\pm 2$ ,  $\pm 4$  C.  $\pm \frac{1}{4}$ ,  $\pm \frac{1}{2}$ ,  $\pm 1$ ,  $\pm 2$  D.  $\pm \frac{1}{2}$ ,  $\pm 1$ ,  $\pm 2$ ,  $\pm 4$ ,  $\pm 8$ 


- Determine the remainder when  $6x^3 11x^2 + 14x 5$  is divided by  $2x^2 7x + 3$ . 94.
  - A. -107x 53
- B. -107x + 43
- C. 40x 20
- D. 20
- The following graph represents the polynomial function  $y = Ax^4 + Bx^3 + Cx^2 + Dx + E$ . What conditions must be satisfied 95. by A and E?



B. 
$$A < 0$$
 and  $E > 0$ 

C. 
$$A > 0$$
 and  $E < 0$ 

D. 
$$A > 0$$
 and  $E > 0$ 



Which polynomial inequality describes the solution shown?



- A.  $(x-1)(x+2)(x+3) \ge 0$
- B.  $(x-1)(x+2)(x+3) \le 0$
- C.  $(x+1)(x-2)(x-3) \ge 0$
- D.  $(x+1)(x-2)(x-3) \le 0$
- For the polynomial function  $p(x) = ax^3 + bx 3$ , p(-1) = 4. Determine the value of p(1).
  - A. -10
- B. -4
- C. 4
- D. 10
- If -2 is a root of  $2x^3 + kx^2 11x + 6 = 0$ , determine the other two roots.

#### **JAN 1998**

- Given a polynomial p(x), what condition must be true for x-2 to be a factor of p(x)?
  - A. p(2) = 0
- B. p(-2) = 0 C. p(x) = 2
- D. p(x) = -2
- 100. According to the Rational Root Theorem, determine all possible rational roots of  $2x^3 - 5x^2 + 12x - 6 = 0.$ 
  - A.  $\pm 1$ ,  $\pm 2$ ,  $\pm 3$ ,  $\pm 6$

B.  $\pm \frac{1}{2}, \pm \frac{1}{3}, \pm \frac{2}{3}, \pm \frac{1}{6}$ 

C.  $\pm 1, \pm 2, \pm 3, \pm 6, \pm \frac{1}{2}, \pm \frac{3}{2}$ 

- D.  $\pm 1, \pm 2, \pm \frac{1}{2}, \pm \frac{1}{3}, \pm \frac{2}{3}, \pm \frac{1}{6}$
- 101. What is the quotient when  $5x^3 6x^2 + 64$  is divided by x + 2?

  - A.  $5x^2 + 4x + 8$  B.  $5x^2 16x + 32$  C.  $5x^2 + 4x + 72$  D.  $5x^2 16x + 96$

- 102. Determine the remainder when  $3x^{45} + 4x^8 5x^3 + 2$  is divided by x + 1.
  - A. -10
- B. -2

C. 4

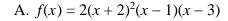
D. 8

- 103. What is the least number of real zeros that a polynomial function can have if its degree is 5?
  - A. 0

B. 1

C. 3

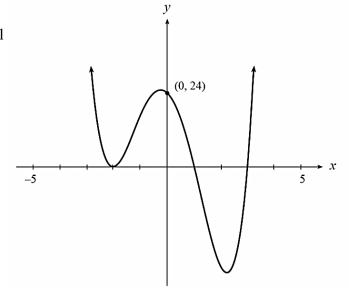
D. 5


- 104. Determine the real roots:  $x^3 + 3x^2 6x 8 = 0$ 
  - A. -4, -1, 2 B. -4, 1, 2 C. -2, 1, 4 D. -1, 2, 4

- 105. Solve the inequality: (x + 5)(x 2)(6 x) > 0
  - A. x < -5 or x > 6

B. x < -5 or x > 2

C. -5 < x < 2 or x > 6


- D. x < -5 or 2 < x < 6
- 106. Determine a possible equation of the polynomial function y = f(x) shown:



B. 
$$f(x) = 4(x+2)^2(x-1)(x-3)$$

C. 
$$f(x) = 2(x-2)^2(x+1)(x+3)$$

D. 
$$f(x) = 4(x+2)(x-1)(x-3)$$



# **JUNE 1998**

- 107. According to the Rational Root Theorem, determine all possible rational roots of  $5x^3 - 4x^2 + 15 = 0.$ 
  - A.  $\pm 1$ ,  $\pm 5$
  - C.  $\pm 1, \pm 3, \pm 5, \pm 15, \pm \frac{1}{5}, \pm \frac{3}{5}$

- B.  $\pm 1$ ,  $\pm 3$ ,  $\pm 5$ ,  $\pm 15$
- D.  $\pm 1, \pm 5, \pm \frac{1}{3}, \pm \frac{5}{3}, \pm \frac{1}{5}, \pm \frac{1}{15}$
- 108. If 3x-1 is a factor of p(x), which of the following must have a value of 0?

  - A.  $p\left(\frac{1}{3}\right)$  B.  $p\left(-\frac{1}{3}\right)$  C. p(-1)
- D. p(1)

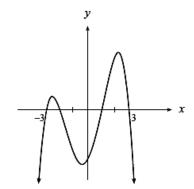
- 109. How many real roots are there for the polynomial equation  $x(x^2 4)(x^2 + 9) = 0$ ?
  - A. 1
- B. 2
- C. 3
- D. 5

- 110. Factor:  $x^3 2x^2 5x + 6$ 
  - A. (x+1)(x-2)(x+3)

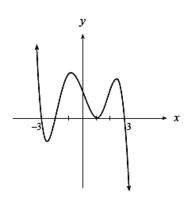
B. (x+1)(x+2)(x-3)

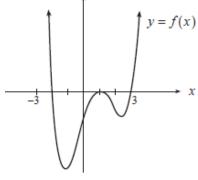
C. (x-1)(x-2)(x+3)

- D. (x-1)(x+2)(x-3)
- 111. Determine the quotient when  $2x^3 5x^2 + 7x + 3$  is divided by 2x + 1.

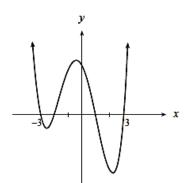

- A.  $x^2 3x + 4$  B.  $x^2 3x + 5$  C.  $x^2 2x 2$  D.  $x^2 2x + 2$
- 112. If the cubic polynomial function f(x) = k(x-1)(x+2)(x-3) passes through the point (2, 6), determine the value of k.
  - A.  $-\frac{3}{2}$  B.  $-\frac{2}{3}$  C.  $\frac{2}{3}$

- 113. Solve: (x+5)(x+1)(3-x) < 0

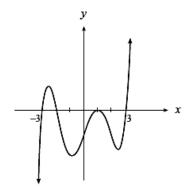

114. Given the graph of y = f(x), which of the following best represents the graph of y = (x + 3) f(x)?




A.




B.






C.



D.



# **JAN 1999**

115. If 5 is a zero of the polynomial P(x), then which of the following must be true?

A. 
$$P(x) = 5$$

B. 
$$P(5) = 0$$

C. 
$$P(0) = 5$$

D. 
$$P(-5) = 0$$

116. According to the Rational Root Theorem, determine all possible rational roots of  $4x^5 - 3x^3 + 6x - 2 = 0$ .

A. 
$$\pm 1, \pm 2$$

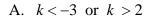
B. 
$$\pm 1, \pm 2, \pm 4, \pm \frac{1}{2}$$

C. 
$$\pm 1, \pm 2, \pm \frac{1}{2}, \pm \frac{1}{4}$$

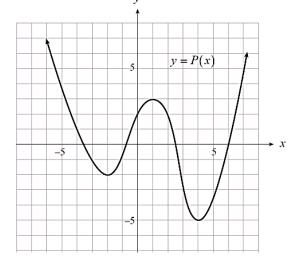
D. 
$$\pm 1, \pm 2, \pm 4, \pm \frac{1}{2}, \pm \frac{1}{4}$$

- 117. Determine the remainder when  $x^{12} 2x^7 + 6x^2 4$  is divided by x + 1.
  - A. 0

B. 1


C. 4

D. 5


118. Which of the following is a real zero of the polynomial function  $f(x) = x^3 - 3x + 3$ ?



- A. -2.10
- B. -2.00
- C. 0.82
- D. 3.00
- 119. The graph of a polynomial function y = P(x) is shown below. If f(x) = P(x) + k, determine all values of k such that f(x) will have two unequal real zeros and no other real zeros.



- B. 2 < k < 5
- C. -2 < k < 5
- D. 2 < k < 5 or k < -3



120. Solve:  $x^3 - 8x^2 \ge -4x + 20$ 



# **JUNE 1999**

121. When the polynomial p(x) is divided by x-4, the remainder is 6. Which of the following must be true?

A. 
$$p(4) = 6$$

A. 
$$p(4) = 6$$
 B.  $p(-4) = 6$  C.  $p(6) = 4$ 

C. 
$$p(6) = 4$$

D. 
$$p(-6) = 4$$

122. Solve: 
$$x^3 - 7x - 6 = 0$$

- A. -1, -2, 3 B. -1, 2, -3 C. 1, -2, 3

- D. 1, 2, -3

123. Determine the largest root of  $x^3 - 30x^2 + 235x - 430 = 0$ .



- A. 2.64
- B. 8.74

- C. 18.62
- D. 18.75

124. According to the Rational Root Theorem, which of the following equations has possible rational roots of  $\pm 1, \pm 2, \pm \frac{1}{3}, \pm \frac{2}{3}$ ?

A. 
$$3x^3 - 4x^2 + 5x + 1 = 0$$

B. 
$$6x^3 - 4x^2 + 5x + 1 = 0$$

C. 
$$2x^3 - 4x^2 + 5x + 3 = 0$$

D. 
$$3x^3 - 4x^2 + 5x + 2 = 0$$

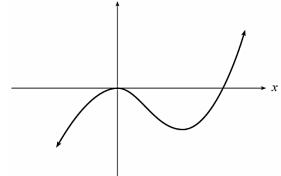
125. Which of the following is a polynomial function with zeros of  $-\sqrt{2}$ ,  $\sqrt{2}$  and -1?

A. 
$$P(x) = x^3 - x^2 - 2x + 2$$

B. 
$$P(x) = x^3 + x^2 - 2x - 2$$

C. 
$$P(x) = x^3 - x^2 - 4x + 4$$

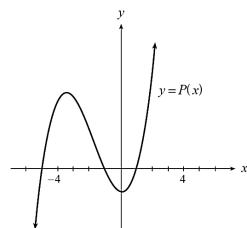
D. 
$$P(x) = x^3 + x^2 - 4x - 4$$


126. The graph of the polynomial function  $P(x) = ax^3 + bx^2 + cx + d$ , where a, b, c and d are constants, is shown. What are the conditions on c and d?

A. 
$$c = 0, d = 0$$

B. 
$$c = 0, d > 0$$

C. 
$$c > 0, d = 0$$


D. 
$$c \neq 0, d = 0$$



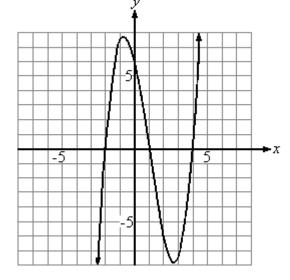
127. The graph of the cubic polynomial function y = P(x) is shown below. Determine the zeros of y = xP(-x).

A. 
$$-5, -1, 0, 1$$

C. 
$$-1, 0, 1, 5$$



128. Solve:  $x^3 - 8x^2 > 18x - 20$ 


# **JAN 2000**

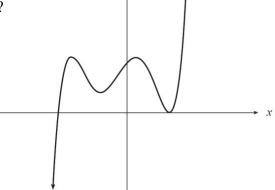
- 129. According to the Rational Root Theorem, determine all possible rational roots of  $5x^3 - 3x^2 + x - 2 = 0$ .
  - A.  $\pm 1, \pm 2$
- B.  $\pm 1, \pm 5$  C.  $\pm 1, \pm 2, \pm \frac{1}{2}, \pm \frac{5}{2}$  D.  $\pm 1, \pm 2, \pm \frac{1}{5}, \pm \frac{2}{5}$
- 130. How many different real roots are there for the polynomial equation  $x(x-3)(x^2+6)=0$ ?
  - A. 1
- B. 2

C. 3

- D. 4
- 131. Determine the remainder when  $3t^3 7t^2 11t + 20$  is divided by  $t^2 + 2t 4$ 
  - A. 3t 13
- B. -25t + 24
- C. -25t + 72
- D. 27t 32
- 132. A cubic polynomial function that passes through the point (3, 24) has zeros at 5, -1 and -3. Determine an equation of this function.
  - A. y = -2(x-5)(x+1)(x+3)
- B.  $y = -\frac{1}{2}(x-5)(x+1)(x+3)$
- C.  $y = \frac{1}{2}(x-5)(x+1)(x+3)$
- D. y = 2(x-5)(x+1)(x+3)
- 133. Solve the inequality:  $-(x-3)(x+2)^2 < 0$

- D.
- 134. The graph of the polynomial function y = f(x) is shown. Determine the remainder when f(x) is divided by (x-2).
  - A. -6
  - B. 0
  - C. 1
  - D. 6




$$x^3 + 10x^2 = 22 - 10x$$



#### **JUNE 2000**

- 136. According to the Rational Root Theorem, determine all possible rational roots of  $4x^3 - 7x^2 + 3x - 2 = 0.$

- A.  $\pm 1, \pm 2$  B.  $\pm 1, \pm 2, \pm 4$  C.  $\pm 1, \pm 2, \pm 4, \pm \frac{1}{2}$  D.  $\pm 1, \pm 2, \pm \frac{1}{4}, \pm \frac{1}{2}$
- 137. What is the minimum degree of the polynomial function shown?
  - A. 2
- B. 3
- C. 4
- D. 5



138. Solve:  $2x^3 + 5 = 5x^2 + 5x$ 



- A. -1.88
- B. -0.58
- C. -1.22, 0.67, 3.05
- D. -1.00, 0.60, 3.00
- 139. Solve the following inequality for x, given that a, b and c are constants such that a < b < c.

$$(x-a)^3(x-b)^2(x-c) > 0$$

- A. x > c
- B. x < a or x > c C. x < c,  $x \ne a$ ,  $x \ne b$  D. a < x < c,  $x \ne b$
- 140. Determine all values for k such that  $y = 2x^3 + 3x^2 12x + k$  has only one real zero.



- A. k < -20
- B. k > 7 C. -20 < k < 7
- D. k < -20 or k > 7
- 141. When  $2x^3 8x^2 + kx + 18$  is divided by x + 2, the remainder is -14. Find k, then find all real roots of  $2x^3 - 8x^2 + kx + 18 = 0$ .

## **JAN 2001**

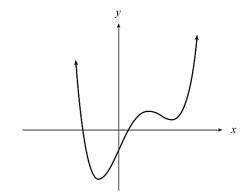
- 142. Which expression represents the remainder when the polynomial P(x) is divided by x 9?
  - A. *P*(9)
- B. P(-9)
- C. P(0)
- D. P(x 9)
- 143. According to the Rational Root Theorem, which of the following is a possible root of the equation  $5x^3 + mx^2 + nx + 20 = 0$ , where m and n are integers?

- D.  $\frac{1}{2}$
- 144. Determine the quotient when  $x^4 8x^2 + 2x 7$  is divided by x + 3.

- A.  $x^2 5x 13$  B.  $x^2 11x + 35$  C.  $x^3 3x^2 + x 1$  D.  $x^3 + 3x^2 + x + 5$
- 145. Determine the value of k if x-2 is a factor of the polynomial  $x^3-4x^2+kx+6$ .
  - A. -9

B. -1

C. 1


- D. 9
- 146. Solve  $(x + a)^2 (x + b)(x + c) < 0$ , where a, b, c are real number constants and 0 < a < b < c.

- A. b < x < c B. -b < x < -c C. -c < x < -b D. -b < x < -a, x < -c
- 147. Solve:  $x^3 15x^2 = -10x 30$



#### **JUNE 2001**

- 148. Determine the number of real zeros of the function shown.
  - A. 1
- B. 2
- C. 3
- D. 4



- 149. Find the quotient when  $2x^3 3x^2 + 2x 8$  is divided by x + 1.

- A.  $x^2 2x$  B.  $x^2 4x + 6$  C.  $2x^2 x + 1$  D.  $2x^2 5x + 7$
- 150. The polynomial equation  $mx^3 + 7x^2 3x + n = 0$ , where m and n are integers, has a root of  $\frac{4}{9}$ . According to the Rational Root Theorem, which of the following could be a value for m?
  - A. 2

B. 4

C. 6

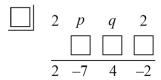
D. 18

- 151. Solve:  $x^3 < x$

- A. x < 0, x > 1 B. -1 < x < 1 C. -1 < x < 0, x > 1 D. x < -1, 0 < x < 1
- 152. Solve:  $x^3 + 2x^2 104x + 192 = 30$



- A. 1.65, 8.24


- B. 2.37, 7.73 C. -12.11, 2.37, 7.73 D. -11.89, 1.65, 8.24
- 153. The points (-2, 0), (0, 5) and (2, -4) are on the graph of a third degree polynomial function, y = p(x). If p(x) is divided by x - 2, determine the remainder.
  - A. -4

- B. 0
- C. 4

- D. 5
- 154. A cubic polynomial function has a double zero at −2 and a single zero at 3. If this function passes through the point (4, -24), determine an equation of the function. Answer may be left in factored form.

# **ADDITIONAL QUESTIONS**

155. What numbers should replace p and q in the incomplete synthetic division shown below?



- A. p = -5, q = -3 B. p = -5, q = 3 C. p = 5, q = -3 D. p = 5, q = 3

156. Determine the coefficient of x in the quotient when  $2x^4 - 7x^3 + 9x^2 + 2x - 8$  is divided by  $x^2 - 3x + 4$ .

A. -13

- B. -1 C. 1

D. 13

157. Graph the solution to  $(x+1)(x-2)^2(x+3)^3 \le 0$ .

158. Find a polynomial equation of lowest degree with integral coefficients such that one root of f(x) = 0 is  $\sqrt{2} + \sqrt{3}$ .

159. Given the following table of values for the polynomial function y = f(x), determine the minimum number of zeros for f(x).

- A. 1
- B. 2
- C. 3
- D. 4

- $\begin{array}{c|cccc}
  -2 & -12 \\
  -1 & 2 \\
  0 & 3
  \end{array}$
- 1
- 2

- 160. When  $x^4 + kx^2 5$  is divided by  $x^2 + 1$ , the remainder is -6. Find the value of k.
  - A. -2

B. 0

C. 1

- D. 2
- 161. A polynomial function of degree 3 has zeros -2, 2, 4, and passes through the point (3, -25). Determine an equation of the function. (Answer may be left in factored form.)

- 162. Determine the cubic polynomial function which has zeros of -1, 2 and 3, and goes through the point (4, 6).
  - A. f(x) = (x+1)(x-2)(x-3)
- B.  $f(x) = \frac{3}{5}(x+1)(x-2)(x-3)$
- C. f(x) = (x-1)(x+2)(x+3)
- D.  $f(x) = \frac{1}{21}(x-1)(x+2)(x+3)$
- 163. If p(x) = (x-2)q(x) + r, determine p(2).

  - A. q(2) B. q(-2) C. -r
- D. *r*
- 164. A polynomial function of degree 3 has zeros 5, 3, -1, and passes through the point (2, -6). Determine an equation of this function. (Answer may be left in factored form.)

- 165. Determine a factor of degree 2 of the polynomial p(x) if p(3) = 0 and p(-4) = 0.

  - A.  $x^2 + x 12$  B.  $x^2 x + 12$  C.  $x^2 x 12$  D.  $x^2 + x + 12$

- 166. Determine the values of k for which  $\frac{1}{3}$  is a zero of  $p(x) = -9x^3 + 3x^2 3kx + k^3$ .
  - A. -2, -1, 0
- B. -2, 0, 1
- C. -1, 0, 1 D. -1, 0, 2
- 167. Determine the polynomial function of degree 3, with zeros of -2, 0, and 3, that passes through the point (2, 5). Answer may be left in factored form.

- 168. Determine the number of rational roots for the equation  $x^5 2x 1 = 0$ .
  - A. 1

B. 2

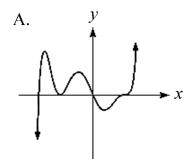
C. 3

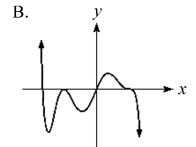
- D. 5
- 169. When a polynomial P(x) is divided by x + 4, the remainder is 5. Which point must be on the graph of the function y = P(x)?
  - A. (-4, 5)

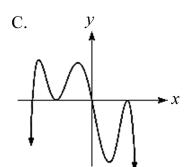
- B. (5, -4) C. (-4, -5) D. (-5, -4)
- 170. A polynomial function of degree 3 has a zero of -1 and a double zero of 4. Determine this function if it passes through the point (1, 10). Answer may be left in factored form.

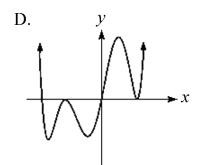
171. If x + 2 is a factor of the polynomial  $P(x) = 2x^3 + kx^2 - 32x - 4k^2$ , determine all possible values of k.

172. Solve the following inequality:  $x^3 - 3x^2 - x > 2x - 4$ 





173. Determine the range of the function  $f(x) = x^4 - 3x^3 - 8$ .





- A.  $y \ge -18.81$  B.  $y \ge -16.54$  C.  $y \ge -8$  D. all real numbers
- 174. Determine the cubic polynomial function with zeros 1, 2, and -3 that passes through (3, -10).(Answer may be left in factored form.)

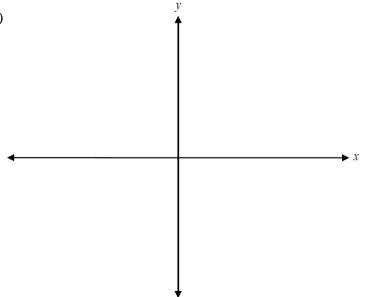
- 175. The function H(x) is the product of a 3rd degree polynomial function and a 2rd degree polynomial function. What is the maximum number of zeros of H(x)?
  - A. 2
- B. 3
- C. 5
- D. 6
- 176. Which graph could represent  $f(x) = x(a-x)(x-b)^2 (x-c)^3$ , where a, b and c are constants?










177. Solve:  $x^4 - x^3 \ge 8x^2 + 2$ 



- 178. If the polynomial  $p(x) = ax^2 + bx 6$  is divided by (x-1), the remainder is -9. When p(x) is divided by (x+2), the remainder is 12. Find the value of b.
  - A. -5
- B. -2
- C. 2
- D. 5
- 179. If 2 is a root of the polynomial equation  $6x^3 + kx^2 + x + 2 = 0$ , determine the other roots.

180. Determine all of the zeros of the function  $p(x) = x^3 - 5x^2 - 2x + 24$ , given that one of the factors of p(x) is (x-3).

181. Sketch the graph of y = -2(x - 1)(x - 3)(x + 1)

