43. The graph of y = f(x) is shown below.

On the grids provided, sketch the graphs of:

A.
$$y = f(-x) - 3$$

B.
$$y = \frac{1}{f(x)}$$

A.

B.

AUG 2005

44. If the function $y = 3^x$ is expanded vertically by a factor of 9 to produce a new function, which of the following is an equation of the new function?

A.
$$y = 3^{2x}$$

B.
$$y = 3^{3x}$$

C.
$$y = 3^{x+2}$$

D.
$$y = 3^{x-2}$$

45. Which equation represents the graph of y = g(x) after it is translated 3 units to the right?

A.
$$y = g(x) + 3$$

$$B. \quad y = g(x) - 3$$

A.
$$y = g(x) + 3$$
 B. $y = g(x) - 3$ C. $y = g(x + 3)$ D. $y = g(x - 3)$

D.
$$y = g(x - 3)$$

46. The graph of y = f(x) is shown below. Which graph represents y = |f(x)| + 2?

47. For which of the following functions is f(-x) = f(x)?

В.

C.

D.

- 48. If the point (6,10) is on the graph of y = f(x), which point must be on the graph of $y = \frac{1}{2f(x)}$?
 - A. $\left(3, \frac{1}{10}\right)$ B. $\left(6, \frac{1}{5}\right)$ C. $\left(6, \frac{1}{10}\right)$ D. $\left(6, \frac{1}{20}\right)$

- 49. Given the graph of the function y = f(x) on the left, determine the equation of the function on the right.

- A. $y = f\left(\frac{x}{2} 3\right)$ B. $y = f\left(\frac{x 3}{2}\right)$ C. y = f(2x 3) D. y = f(2x 6)

50. The graph of y = f(x) is shown below. On the grids provided, sketch the graphs of

A.
$$y = 3f(x) + 1$$

B.
$$y = \frac{1}{f(x)}$$

51. Which equation represents the graph of $\frac{(x-2)^2}{4} + \frac{(y-3)^2}{9} = 1$ after it is translated 5 units to the right and 1 unit up?

A.
$$\frac{(x-7)^2}{4} + \frac{(y-4)^2}{9} = 1$$
 B. $\frac{(x-7)^2}{4} + \frac{(y-2)^2}{9} = 1$

B.
$$\frac{(x-7)^2}{4} + \frac{(y-2)^2}{9} = 1$$

C.
$$\frac{(x+3)^2}{4} + \frac{(y-4)^2}{9} = 1$$

D.
$$\frac{(x+3)^2}{4} + \frac{(y-2)^2}{9} = 1$$

52. Which equation represents the graph of $y = 2^x$ after it is reflected in the x-axis?

A.
$$v = 2^{-x}$$

B.
$$y = -2^x$$

C.
$$v = \log_2 x$$

C.
$$y = \log_2 x$$
 D. $y = -\log_2 x$

AUG 2006

- 53. How is the graph of y = f(4x) related to the graph of y = f(x)?
 - A. y = f(x) has been compressed vertically by a factor of 4.
 - B. y = f(x) has been compressed horizontally by a factor of 4.
 - C. y = f(x) has been expanded vertically by a factor of 4.
 - D. y = f(x) has been expanded horizontally by a factor of 4.
- 54. If the maximum value of the function y = f(x) is 6, determine the maximum value of $y = \frac{1}{3}f(\frac{1}{2}x)$.
 - A. 2

B. 3

C. 12

- D. 18
- 55. If the point (-2, -5) is on the graph of y = f(x), which point must be on the graph of y = |f(x-1)| 3?
 - A. (-3,2)
- B. (-1,2)
- C. (1, -8)
- D. (3, -8)

56. The graph of y = f(x) is shown below.

On the grids provided, sketch the graphs of:

A.
$$y = 2|f(x)| + 1$$

B.
$$y = \frac{1}{f(x)}$$

A.

B.

SAMPLE 2008

57. Which equation represents the graph of y = f(x) after it is vertically compressed by a factor of 2 and then translated 2 units to the left?

A.
$$\frac{y}{2} = f(x + 2)$$

A.
$$\frac{y}{2} = f(x+2)$$
 B. $\frac{y}{2} = f(x-2)$ C. $2y = f(x+2)$ D. $2y = f(x-2)$

C.
$$2y = f(x+2)$$

D.
$$2y = f(x-2)$$

58. Determine the inverse of the function $f(x) = \frac{4x+1}{3x}$.

A.
$$f^{-1}(x) = \frac{1}{3X - 4}$$

B.
$$f^{-1}(x) = \frac{-1}{3x - 4}$$

C.
$$f^{-1}(x) = \frac{3x}{4x+1}$$

A.
$$f^{-1}(x) = \frac{1}{3X - 4}$$
 B. $f^{-1}(x) = \frac{-1}{3x - 4}$ C. $f^{-1}(x) = \frac{3x}{4x + 1}$ D. $f^{-1}(x) = \frac{-3x}{4x + 1}$

- 59. The *y*-intercept of the function y = f(x) is 5. Determine the *y*-intercept of y = -f(x) + 3
 - A. -2

B. -8

C. 8

- D. 2
- 60. The graph of function y = f(x) is shown. Which of the following is the graph of y = f(2x) 3?

A.

B.

C.

D.

- 61. The point (10, 6) is on the graph of y = f(x), what point must be on the graph of y = f(-2x 4)?
 - A. (-7,6)
- B. (-9,6)
- C. (-22,6)
- D. (-24,6)

The graph of y = f(x) is shown on the left. Determine an equation of the function graphed 62. on the right.

A.
$$y = \frac{1}{2}f(x-1) - 5$$
 B. $y = \frac{1}{2}f(x-1) - 4$ C. $y = 2f(x-1) - 5$ D. $y = 2f(x-1) - 4$

B.
$$y = \frac{1}{2}f(x-1) - 4$$

C.
$$y = 2f(x-1) - 5$$

D.
$$y = 2f(x-1) - 4$$

The graph of y = f(x) is shown below. 63.

On the grids provided, sketch the graphs of:

A.
$$y = 2 |f(x) - 1|$$

B.
$$y = \frac{1}{f(x)}$$

JAN 2008

- 64. If y = (x + 4)(x 2), determine the zeros of the function y = f(2x).
 - A. -8, 4
- B. −4, 2
- C. −2, 1
- D. -1, 2
- Which equation represents the graph of y = f(x) after it is expanded vertically by a factor
 - A. $y = \frac{1}{5}f(x)$ B. y = 5f(x) C. $y = f(\frac{x}{5})$ D. y = f(5x)

The graph of y = f(x) is shown: 66.

Which graph represents the graph of y = -f(x+3) + 1?

A.

B.

C.

D.

67. Determine the inverse of the function $f(x) = x^3 - 2$.

A.
$$f^{-1}(x) = \sqrt{x+2}$$

B.
$$f^{-1}(x) = \sqrt{x} + 2$$

C.
$$f^{-1}(x) = \sqrt{x} - 2$$

A.
$$f^{-1}(x) = \sqrt[3]{x+2}$$
 B. $f^{-1}(x) = \sqrt[3]{x}+2$ C. $f^{-1}(x) = \sqrt[3]{x}-2$ D. $f^{-1}(x) = \sqrt[3]{x-2}$

68. If the point (6, -12) is on the graph of y = f(x), which point must be on the graph of $y=f\left(-\frac{1}{3}x+6\right)$?

A.
$$(-36, -12)$$
 B. $(-24, -12)$ C. $(0, -12)$ D. $(16, -12)$

B.
$$(-24, -12)$$

C.
$$(0, -12)$$

The graph of y = f(x) is shown below on the left. Determine an equation of the function 69. graphed on the right.

A.
$$y = -\frac{1}{2}f(x)$$

B.
$$y = -\frac{1}{2}f(x) + 2$$

A.
$$y = -\frac{1}{2}f(x)$$
 B. $y = -\frac{1}{2}f(x) + 2$ C. $y = -\frac{1}{2}f(x) + 3$ D. $y = -\frac{1}{2}f(x) + 4$

D.
$$y = -\frac{1}{2}f(x) + 4$$

70. Given the graph of y = f(x) below, sketch g(x) = 3|f(x)| - 2.

71. The graph of y = f(x) is shown:

On the grids provided, sketch the graphs of:

A.
$$y = -|f(x) + 2|$$

B.
$$y = \frac{1}{f(x)}$$

72. For the function $f(x) = \frac{1}{x+3}$: Determine the equation that defines the inverse function, $f^{-1}(x)$, and sketch the graphs of y = f(x) and $y = f^{-1}(x)$ on the grid provided.

