SPECS 2001

1. If the graph of y = f(x) is translated 5 units to the left, determine the resulting equation.

A.
$$y - 5 = f(x)$$

B.
$$y + 5 = f(x)$$

C.
$$y = f(x - 5)$$

D.
$$y = f(x + 5)$$

- 2. How is the graph $5y = \sqrt{x}$ related to the graph $y = \sqrt{x}$?
 - A. $y = \sqrt{x}$ has been vertically translated 5 units up
 - B. $y = \sqrt{x}$ has been expanded vertically by a factor of 5
 - C. $y = \sqrt{x}$ has been compressed vertically by a factor of 5
 - D. $y = \sqrt{x}$ has been compressed horizontally by a factor of 5
- 3. Simplify: $f^{-1}(f(x))$

C.
$$\frac{1}{x}$$

D.
$$-\frac{1}{x}$$

4. Given the function $f(x) = (x-1)^3 + 2$, determine $f^{-1}(x)$, the inverse function.

A.
$$f^{-1}(x) = \sqrt{x+2} + 1$$

B.
$$f^{-1}(x) = \sqrt{x-2} + 1$$

C.
$$f^{-1}(x) = \sqrt{x+2} - 1$$

D.
$$f^{-1}(x) = \sqrt{x-2} - 1$$

- 5. The function y = f(x) is transformed to y = f(2x + 4). Identify the horizontal expansion or compression factor, then the translation to the graph of the function.
 - A. horizontal expansion by a factor of 2, then a translation of 4 units left.
 - B. horizontal compression by a factor of 2, then a translation of 4 units left.
 - C. horizontal expansion by a factor of 2, then a translation of 2 units left.
 - D. horizontal compression by a factor of 2, then a translation of 2 units left.

The graph of $y = \sqrt{9 - x^2}$ is shown. 6.

Which of the following graphs represents $2y = \sqrt{9 - x^2}$?

A.

B.

C.

SAMPLE 2001

- If (6,-5) is a point on the graph of y=f(x), what must be a point on the graph of 7. y = -f(2(x+2)) - 3?
 - A. (-1, 2)

- B. (1, -2) C. (1, 2) D. (10, 2)
- Given the function $y_1 = f(x)$, describe how the graph of the new function, $y_2 = 4f(x-2)$, is 8. related to the graph of y_1
 - A. The graph of y_1 has been vertically compressed by a factor of 4 then translated 2 units right to form the graph of y_2 .
 - B. The graph of y_1 has been vertically expanded by a factor of 4 then translated 2 units right to form the graph of y_2 .
 - C. The graph of y_1 has been vertically compressed by a factor of 4 then translated 2 units left to form the graph of y_2 .
 - D. The graph of y_1 has been vertically expanded by a factor of 4 then translated 2 units left to form the graph of y_2 .

The graph of the function y = f(x) is shown below. 9.

Sketch the graphs of:

A.
$$y = f(-x)$$

A.
$$y = f(-x)$$
 B. $y = f(x - 3)$ C. $y = 2f(x)$ D. $x = f(y)$

C.
$$y = 2f(x)$$

$$D. \quad x = f(y)$$

A.

B.

C.

D.

JAN 2002

10. Which equation represents the graph of $y = \sqrt{x}$ after it is translated 4 units to the right?

A.
$$y = \sqrt{x} - 4$$

B.
$$y = \sqrt{x-4}$$

B.
$$y = \sqrt{x-4}$$
 C. $y = \sqrt{x+4}$

D.
$$y = \sqrt{x} + 4$$

11. If y = 5x - 1, determine the equation of $f^{-1}(x)$, the inverse of f(x).

A.
$$f^{-1}(x) = \frac{1}{5x - 1}$$
 B. $f^{-1}(x) = \frac{1}{5}x - 1$ C. $f^{-1}(x) = \frac{x + 1}{5}$ D. $f^{-1}(x) = \frac{x - 1}{5}$

B.
$$f^{-1}(x) = \frac{1}{5}x - 1$$

C.
$$f^{-1}(x) = \frac{x+1}{5}$$

D.
$$f^{-1}(x) = \frac{x-1}{5}$$

12. The graph of y = f(x) is shown.

Which of the following graphs represents y = -2f(x)?

13. The graph of y = f(x) is shown.

On the grids provided, sketch the graphs of: A. y = f(x+2) - 3 B. y = f(x+2) - 3

A.
$$v = f(x+2) - 3$$

B.
$$y = f(2x)$$

C.
$$y = |f(2x)|$$

A.

B.

C.

14. Which equation represents the graph of $y = x^3 + x^2$ after it is reflected in the *y*-axis?

A.
$$y = -x^3 + x^2$$

B.
$$y = -x^3 - x^2$$

A.
$$y = -x^3 + x^2$$
 B. $y = -x^3 - x^2$ C. $y = \frac{1}{x^3 + x^2}$ D. $y = y^3 + y^2$

D.
$$y = y^3 + y^2$$

APR 2002

15. Given the function y = f(x), which of the following represents its reflection in the y-axis?

A.
$$y = f(-x)$$

B.
$$y = -f(x)$$

C.
$$y = f(y)$$

A.
$$y = f(-x)$$
 B. $y = -f(x)$ C. $y = f(y)$ D. $y = \frac{1}{f(x)}$

- 16. How is the graph of $y = \frac{1}{7}f(x)$ related to the graph of y = f(x)?
 - A. y = f(x) has been compressed vertically by a factor of 7
 - B. y = f(x) has been compressed horizontally by a factor of 7
 - C. y = f(x) has been expanded vertically by a factor of 7
 - D. y = f(x) has been expanded horizontally by a factor of 7
- 17. Given $f(x) = x^3 27$, determine $f^{-1}(x)$, the inverse of f(x).

A.
$$f^{-1}(x) = \sqrt{x+27}$$

A.
$$f^{-1}(x) = \sqrt{x+27}$$
 B. $f^{-1}(x) = \sqrt{x-27}$ C. $f^{-1}(x) = \sqrt{x}+3$ D. $f^{-1}(x) = x^3+27$

C.
$$f^{-1}(x) = \sqrt{x} + 3$$

D.
$$f^{-1}(x) = x^3 + 27$$

18. If (4, -3) is a point on the graph of y = f(x), what must be a point on the graph of y = f(2x + 10)?

A.
$$(-8, -3)$$
 B. $(-3, -3)$ C. $(3, -3)$ D. $(18, -3)$

B.
$$(-3, -3)$$

C.
$$(3, -3)$$

D.
$$(18, -3)$$

19. The graph of the function y = f(x) is shown below.

Sketch the graphs of: A. y = 3f(x - 2)

B.
$$y = -f\left(\frac{x}{2}\right)$$

JUNE 2002

20. Given the graph of y = f(x), select the graph of $y = \frac{1}{2}f(x)$.

В.

C.

D.

21. Two functions are graphed below, y = f(x) and y = f(a(x - b)). Determine the values of a and b.

A.
$$a = -1$$
, $b = -2$ B. $a = -1$, $b = 2$ C. $a = 1$, $b = -2$ D. $a = 1$, $b = 2$

B.
$$a = -1$$
, $b = 2$

C.
$$a = 1$$
, $b = -2$

D.
$$a = 1$$
, $b = 2$

22. The graph of y = f(x) is shown.

On the grids provided, sketch the graphs of: A. y = 2f(x+3) - 1

A.

B.

AUG 2002

- 23. How is the graph of $y = \sqrt{x-3} + 1$ related to the graph of $y = \sqrt{x}$?
 - A. $y = \sqrt{x}$ has been translated 3 units right and 1 unit up.
 - B. $y = \sqrt{x}$ has been translated 3 units right and 1 unit down.
 - C. $y = \sqrt{x}$ has been translated 3 units left and 1 unit up.
 - D. $y = \sqrt{x}$ has been translated 3 units left and 1 unit down.
- 24. Given f(x) = 3x + 2, determine $f^{-1}(x)$, the inverse of f(x).
- A. $f^{-1}(x) = \frac{x}{3} 2$ B. $f^{-1}(x) = \frac{x-2}{3}$ C. $f^{-1}(x) = \frac{1}{3x+2}$ D. $f^{-1}(x) = 2 \frac{x}{3}$
- 25. Which equation represents a reflection of the graph of $5 x = 2y^2 + y$ in the *y*-axis?

- A. $5+x=2y^2+y$ B. $5-x=2y^2-y$ C. $5+y=2x^2+x$ D. $-5-x=2y^2+y$
- 26. In the point (-3, -6) is on the graph of y = f(x), determine a point on the graph of y = 3|f(x)| + 1.
 - A. (3, 3)

- B. (3, 19) C. (-3, 3) D. (-3, 19)
- 27. Which equation represents the graph of y = f(x) after it is compressed horizontally by a factor of 2 and then translated 4 units right?
- A. y = f(2x 8) B. y = f(2x 4) C. $y = f(\frac{x 4}{2})$ D. $y = f(\frac{x}{2} 4)$

JAN 2003

- 28. How is the graph of y = f(x) + 3 related to the graph of y = f(x)?
 - A. y = f(x) has been translated 3 units up.
 - B. y = f(x) has been translated 3 units down.
 - C. y = f(x) has been translated 3 units to the left.
 - D. y = f(x) has been translated 3 units to the right.

29. Which equation represents the graph of y = f(x) after it is reflected in the line y = x?

A.
$$x = f(y)$$

B.
$$y = f(-x)$$

B.
$$y = f(-x)$$
 C. $y = -f(x)$

D.
$$y = \frac{1}{f(x)}$$

30. If the graph of the function $y = \sqrt{x}$ is horizontally expanded by a factor of 3 and the translated 2 units to the right, determine the equation of this new function.

A.
$$y = \sqrt{3(x-2)}$$

A.
$$y = \sqrt{3(x-2)}$$
 B. $y = \sqrt{\frac{1}{3}(x-2)}$ C. $y = \sqrt{3x-2}$ D. $y = \sqrt{\frac{1}{3}x-2}$

C.
$$y = \sqrt{3x - 2}$$

D.
$$y = \sqrt{\frac{1}{3}x - 2}$$

31. If (8, -6) is a point on the graph of y = f(x), what must be a point on the graph of y = -f(2x) + 3?

B.
$$(-4, -3)$$

- 32. The graph of y = f(x) is shown below on the left. Which equation represents the graph shown on the right?

A.
$$y = f(-(x+8))$$

A.
$$y = f(-(x+8))$$
 B. $y = f(-(x-8))$ C. $y = -f(x-8)$ D. $y = -f(x+8)$

C.
$$y = -f(x - 8)$$

D.
$$y = -f(x + 8)$$

33. The graph of y = f(x) is shown.

Sketch the graphs of

A.
$$y = 2f(x+3)$$

B.
$$y = \frac{1}{f(x)}$$

A.

B.

JUNE 2003

34. The function y = f(x) is graphed to the left below. Determine the equation of the function shown to the right.

A.
$$y = f(2(x-1))^{n}$$

A.
$$y = f(2(x-1))$$
 B. $y = f(\frac{1}{2}(x-1))$ C. $y = 2f(x-1)$ D. $y = \frac{1}{2}(x-1)$

C.
$$y = 2f(x - 1)$$

D.
$$y = \frac{1}{2}(x-1)$$

- 35. If the point (a, b) is on the graph of y = f(x), which point must be on the graph of $y = \frac{1}{f(x-2)}$? (a = 0, b = 0)
 - A. $\left(a-2, \frac{1}{b}\right)$ B. $\left(a+2, \frac{1}{b}\right)$ C. $\left(\frac{1}{a}, b\right)$ D. (a+2, b)

36. The graph of y = f(x) is shown below.

Sketch the graphs of

A.
$$y = 2f(x) - 3$$

B.
$$y = f^{-1}(x)$$

JAN 2004

- 37. Which equation represents the graph of y = g(x) after it is translated 5 units up?
- A. y = g(x) + 5 B. y = g(x) 5 C. y = g(x + 5) D. y = g(x 5)

38. The graph of y = f(x) is shown below.

Which graph represents x = f(y)?

A.

B.

C.

D.

- 39. If the point (4,6) is on the graph of y = f(x), what point must be on the graph of $y = 3\left(\frac{1}{f(x)}\right)$?
 - A. $\left(12, \frac{1}{6}\right)$ B. $\left(4, \frac{1}{18}\right)$ C. $\left(4, \frac{1}{2}\right)$ D. (2,18)

40. The graph of y = f(x) is shown below. Sketch the graphs of:

A.
$$y = -2f(x+3)$$

B.
$$y = \left| f\left(\frac{x}{2}\right) \right|$$

JUNE 2004

41. Which equation represents the graph of $y = \tan x$ after it has been translated 4 units up and 7 units left?

A. $y = \tan(x+7) + 4$ B. $y = \tan(x+7) - 4$ C. $y = \tan(x-7) + 4$ D. $y = \tan(x-7) - 4$

- 42. The point (9, -12) is on the graph of a function. What will the coordinates of this point be after all of the following transformations are performed on the function, in the order given?
 - -horizontal expansion by a factor of 3
 - -reflection in the x-axis
 - -vertical translation of 5 downward
 - -reflection in the line y = x

A. (-27,7)

B. (-17, -27) C. (7,3) D. (7,27)