1. If the graph of $y = f(x)$ is translated 5 units to the left, determine the resulting equation.
 A. $y - 5 = f(x)$ B. $y + 5 = f(x)$ C. $y = f(x - 5)$ D. $y = f(x + 5)$

2. How is the graph $5y = \sqrt{x}$ related to the graph $y = \sqrt{x}$?
 A. $y = \sqrt{x}$ has been vertically translated 5 units up
 B. $y = \sqrt{x}$ has been expanded vertically by a factor of 5
 C. $y = \sqrt{x}$ has been compressed vertically by a factor of 5
 D. $y = \sqrt{x}$ has been compressed horizontally by a factor of 5

3. Simplify: $f^{-1}(f(x))$
 A. x B. $-x$ C. $\frac{1}{x}$ D. $-\frac{1}{x}$

4. Given the function $f(x) = (x - 1)^3 + 2$, determine $f^{-1}(x)$, the inverse function.
 A. $f^{-1}(x) = \sqrt[3]{x + 2} + 1$ B. $f^{-1}(x) = \sqrt[3]{x - 2} + 1$
 C. $f^{-1}(x) = \sqrt[3]{x + 2} - 1$ D. $f^{-1}(x) = \sqrt[3]{x - 2} - 1$

5. The function $y = f(x)$ is transformed to $y = f(2x + 4)$. Identify the horizontal expansion or compression factor, then the translation to the graph of the function.
 A. horizontal expansion by a factor of 2, then a translation of 4 units left.
 B. horizontal compression by a factor of 2, then a translation of 4 units left.
 C. horizontal expansion by a factor of 2, then a translation of 2 units left.
 D. horizontal compression by a factor of 2, then a translation of 2 units left.
6. The graph of \(y = \sqrt{9 - x^2} \) is shown.

Which of the following graphs represents \(2y = \sqrt{9 - x^2} \)?

A. \[
\begin{array}{c}
\text{graph1} \\
\end{array}
\]
B. \[
\begin{array}{c}
\text{graph2} \\
\end{array}
\]
C. \[
\begin{array}{c}
\text{graph3} \\
\end{array}
\]
D. \[
\begin{array}{c}
\text{graph4} \\
\end{array}
\]

SAMPLE 2001

7. If \((6, -5) \) is a point on the graph of \(y = f(x) \), what must be a point on the graph of \(y = -f(2(x + 2)) - 3 \)?

A. \((-1, 2)\)
B. \((1, -2)\)
C. \((1, 2)\)
D. \((10, 2)\)

8. Given the function \(y_1 = f(x) \), describe how the graph of the new function, \(y_2 = 4f(x - 2) \), is related to the graph of \(y_1 \).

A. The graph of \(y_1 \) has been vertically compressed by a factor of 4 then translated 2 units right to form the graph of \(y_2 \).

B. The graph of \(y_1 \) has been vertically expanded by a factor of 4 then translated 2 units right to form the graph of \(y_2 \).

C. The graph of \(y_1 \) has been vertically compressed by a factor of 4 then translated 2 units left to form the graph of \(y_2 \).

D. The graph of \(y_1 \) has been vertically expanded by a factor of 4 then translated 2 units left to form the graph of \(y_2 \).
9. The graph of the function \(y = f(x) \) is shown below.

Sketch the graphs of:

A. \(y = f(-x) \)
B. \(y = f(x - 3) \)
C. \(y = 2f(x) \)
D. \(x = f(y) \)
10. Which equation represents the graph of $y = \sqrt{x}$ after it is translated 4 units to the right?
 A. $y = \sqrt{x} - 4$ B. $y = \sqrt{x} - 4$ C. $y = \sqrt{x} + 4$ D. $y = \sqrt{x} + 4$

11. If $y = 5x - 1$, determine the equation of $f^{-1}(x)$, the inverse of $f(x)$.
 A. $f^{-1}(x) = \frac{1}{5x - 1}$ B. $f^{-1}(x) = \frac{1}{5}x - 1$ C. $f^{-1}(x) = \frac{x + 1}{5}$ D. $f^{-1}(x) = \frac{x - 1}{5}$

12. The graph of $y = f(x)$ is shown.

Which of the following graphs represents $y = -2f(x)$?
13. The graph of \(y = f(x) \) is shown.

On the grids provided, sketch the graphs of:

A. \(y = f(x + 2) - 3 \)
B. \(y = f(2x) \)
C. \(y = |f(2x)| \)
14. Which equation represents the graph of $y = x^3 + x^2$ after it is reflected in the y-axis?

 A. $y = -x^3 + x^2$
 B. $y = -x^3 - x^2$
 C. $y = \frac{1}{x^3 + x^2}$
 D. $y = y^3 + y^2$

APR 2002

15. Given the function $y = f(x)$, which of the following represents its reflection in the y-axis?

 A. $y = f(-x)$
 B. $y = -f(x)$
 C. $y = f(y)$
 D. $y = \frac{1}{f(x)}$

16. How is the graph of $y = \frac{1}{f(x)}$ related to the graph of $y = f(x)$?

 A. $y = f(x)$ has been compressed vertically by a factor of 7
 B. $y = f(x)$ has been compressed horizontally by a factor of 7
 C. $y = f(x)$ has been expanded vertically by a factor of 7
 D. $y = f(x)$ has been expanded horizontally by a factor of 7

17. Given $f(x) = x^3 - 27$, determine $f^{-1}(x)$, the inverse of $f(x)$.

 A. $f^{-1}(x) = \sqrt[3]{x+27}$
 B. $f^{-1}(x) = \sqrt[3]{x-27}$
 C. $f^{-1}(x) = \sqrt{x} + 3$
 D. $f^{-1}(x) = x^3 + 27$

18. If $(4, -3)$ is a point on the graph of $y = f(x)$, what must be a point on the graph of $y = f(2x + 10)$?

 A. $(-8, -3)$
 B. $(-3, -3)$
 C. $(3, -3)$
 D. $(18, -3)$
19. The graph of the function \(y = f(x) \) is shown below.

Sketch the graphs of:

A. \(y = 3f(x - 2) \)

B. \(y = -f\left(\frac{x}{2}\right) \)
20. Given the graph of $y = f(x)$, select the graph of $y = \frac{1}{2}f(x)$.
21. Two functions are graphed below, $y = f(x)$ and $y = f(a(x - b))$. Determine the values of a and b.

![Graph of $y = f(x)$ and $y = f(a(x - b))$](image)

A. $a = -1$, $b = 2$
B. $a = -1$, $b = 2$
C. $a = 1$, $b = -2$
D. $a = 1$, $b = 2$

22. The graph of $y = f(x)$ is shown.

![Graph of $y = f(x)$](image)

On the grids provided, sketch the graphs of:

A. $y = 2f(x + 3) - 1$
B. $y = f^{-1}(x)$
23. How is the graph of \(y = \sqrt{x - 3} + 1 \) related to the graph of \(y = \sqrt{x} \)?

A. \(y = \sqrt{x} \) has been translated 3 units right and 1 unit up.
B. \(y = \sqrt{x} \) has been translated 3 units right and 1 unit down.
C. \(y = \sqrt{x} \) has been translated 3 units left and 1 unit up.
D. \(y = \sqrt{x} \) has been translated 3 units left and 1 unit down.

24. Given \(f(x) = 3x + 2 \), determine \(f^{-1}(x) \), the inverse of \(f(x) \).

A. \(f^{-1}(x) = \frac{x}{3} - 2 \)
B. \(f^{-1}(x) = \frac{x - 2}{3} \)
C. \(f^{-1}(x) = \frac{1}{3x + 2} \)
D. \(f^{-1}(x) = 2 - \frac{x}{3} \)

25. Which equation represents a reflection of the graph of \(5 - x = 2y^2 + y \) in the \(y \)-axis?

A. \(5 + x = 2y^2 + y \)
B. \(5 - x = 2y^2 - y \)
C. \(5 + y = 2x^2 + x \)
D. \(-5 - x = 2y^2 + y \)

26. In the point \((-3, -6)\) is on the graph of \(y = f(x) \), determine a point on the graph of \(y = 3|f(x)| + 1 \).

A. \((3, 3)\)
B. \((3, 19)\)
C. \((-3, 3)\)
D. \((-3, 19)\)

27. Which equation represents the graph of \(y = f(x) \) after it is compressed horizontally by a factor of 2 and then translated 4 units right?

A. \(y = f(2x - 8) \)
B. \(y = f(2x - 4) \)
C. \(y = f\left(\frac{x - 4}{2}\right) \)
D. \(y = f\left(\frac{x}{2} - 4\right) \)

JAN 2003

28. How is the graph of \(y = f(x) + 3 \) related to the graph of \(y = f(x) \)?

A. \(y = f(x) \) has been translated 3 units up.
B. \(y = f(x) \) has been translated 3 units down.
C. \(y = f(x) \) has been translated 3 units to the left.
D. \(y = f(x) \) has been translated 3 units to the right.
29. Which equation represents the graph of \(y = f(x) \) after it is reflected in the line \(y = x \)?

A. \(x = f(y) \)
B. \(y = f(-x) \)
C. \(y = -f(x) \)
D. \(y = \frac{1}{f(x)} \)

30. If the graph of the function \(y = \sqrt{x} \) is horizontally expanded by a factor of 3 and the translated 2 units to the right, determine the equation of this new function.

A. \(y = \sqrt{3(x-2)} \)
B. \(y = \sqrt{\frac{1}{3}(x-2)} \)
C. \(y = \sqrt{3x-2} \)
D. \(y = \sqrt{\frac{1}{3}x-2} \)

31. If \((8, -6)\) is a point on the graph of \(y = f(x) \), what must be a point on the graph of \(y = -f(2x) + 3 \)?

A. \((-16, -3)\)
B. \((-4, -3)\)
C. \((4, 9)\)
D. \((16, 9)\)

32. The graph of \(y = f(x) \) is shown below on the left. Which equation represents the graph shown on the right?

![Graphs](image)

A. \(y = f(-x+8) \)
B. \(y = f(-x-8) \)
C. \(y = -f(x-8) \)
D. \(y = -f(x+8) \)
33. The graph of \(y = f(x) \) is shown.

Sketch the graphs of

A. \(y = 2f(x + 3) \)

B. \(y = \frac{1}{f(x)} \)

34. The function \(y = f(x) \) is graphed to the left below. Determine the equation of the function shown to the right.

A. \(y = f(2(x - 1)) \)

B. \(y = f\left(\frac{1}{2}(x - 1)\right) \)

C. \(y = 2f(x - 1) \)

D. \(y = \frac{1}{2}(x - 1) \)
35. If the point \((a, b)\) is on the graph of \(y = f(x)\), which point must be on the graph of
\[y = \frac{1}{f(x-2)} \] \((a \neq 0, b = 0)\)

A. \((a - 2, \frac{1}{b})\)
B. \((a + 2, \frac{1}{b})\)
C. \((\frac{1}{a}, b)\)
D. \((a + 2, b)\)

36. The graph of \(y = f(x)\) is shown below.

Sketch the graphs of
A. \(y = 2f(x) - 3\)

B. \(y = f^{-1}(x)\)

37. Which equation represents the graph of \(y = g(x)\) after it is translated 5 units up?

A. \(y = g(x) + 5\)
B. \(y = g(x) - 5\)
C. \(y = g(x + 5)\)
D. \(y = g(x - 5)\)
38. The graph of \(y = f(x) \) is shown below.

Which graph represents \(x = f(y) \)?

![Graphs A, B, C, D](image)

39. If the point \((4, 6)\) is on the graph of \(y = f(x) \), what point must be on the graph of \(y = 3\left(\frac{1}{f(x)}\right) \)?

A. \((12, \frac{1}{6})\)
B. \((4, \frac{1}{18})\)
C. \((4, \frac{1}{2})\)
D. \((2,18)\)
40. The graph of \(y = f(x) \) is shown below. Sketch the graphs of:

\[y = -2f(x + 3) \]

A. \(y = -2f(x + 3) \)

\[y = \left| f\left(\frac{x}{2} \right) \right| \]

B. \(y = \left| f\left(\frac{x}{2} \right) \right| \)

41. Which equation represents the graph of \(y = \tan x \) after it has been translated 4 units up and 7 units left?

A. \(y = \tan(x + 7) + 4 \)
B. \(y = \tan(x + 7) - 4 \)
C. \(y = \tan(x - 7) + 4 \)
D. \(y = \tan(x - 7) - 4 \)

42. The point \((9, -12)\) is on the graph of a function. What will the coordinates of this point be after all of the following transformations are performed on the function, in the order given?
- horizontal expansion by a factor of 3
- reflection in the \(x\)-axis
- vertical translation of 5 downward
- reflection in the line \(y = x \)

A. \((-27, 7)\)
B. \((-17, -27)\)
C. \((7, 3)\)
D. \((7, 27)\)