
86. Which equation represents the sine function shown?

B.
$$y = 4 \sin \left[\frac{4}{3} \left(x - \frac{\pi}{6} \right) \right] + 8$$

C.
$$y = 4 \sin \left[\frac{3}{2} \left(x - \frac{\pi}{6} \right) \right] + 8$$

D.
$$y = 4 \sin \left[\frac{3}{2} \left(x + \frac{\pi}{6} \right) \right] + 8$$

87. A wheel rolling along the ground has a radius of 32 cm and rotates once every 8 seconds. At time t = 0 seconds, a point P on the outside edge of the wheel is touching the ground. Determine a cosine function that gives the height, h, of point P above the ground at any time, t, where h is in cm and t is in seconds.

A.
$$h(t) = -32 \cos \left[\frac{\pi}{4} t \right]$$

B.
$$h(t) = -32\cos[2\pi t]$$

C.
$$h(t) = -32 \cos \left[\frac{\pi}{4} t \right] + 32$$

D.
$$h(t) = -32\cos[2\pi t + 32]$$

JAN 2003

88. Determine the range of the function $y = 4\cos x - 2$.

A.
$$-4 \le \nu \le 4$$

$$B. -2 \le y \le 6$$

A.
$$-4 \le y \le 4$$
 B. $-2 \le y \le 6$ C. $-6 \le y \le 2$ D. $2 \le y \le 6$

D.
$$2 \le y \le 6$$

89. Determine the exact value of $\cot \frac{5\pi}{3}$.

A.
$$\sqrt{3}$$

B.
$$-\sqrt{3}$$

C.
$$\frac{1}{\sqrt{3}}$$

D.
$$-\frac{1}{\sqrt{3}}$$

- 90. Determine the period of the function $f(x) = -\frac{1}{2}\sin\frac{x}{3}$.
 - A. $\frac{2\pi}{2}$

Β. π

C. 4π

D. 6π

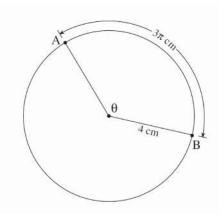
- 91. Solve: $2\sin x + 1 = 0$, $0 \le x < 2\pi$
 - A. $-\frac{\pi}{6}, -\frac{5\pi}{6}$ B. $\frac{\pi}{6}, \frac{5\pi}{6}$
- C. $\frac{7\pi}{6}, \frac{11\pi}{6}$ D. $\frac{4\pi}{3}, \frac{5\pi}{3}$

JUN 2003

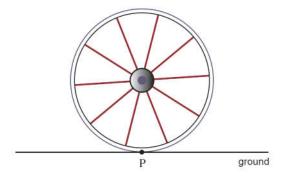
- 92. Convert 120° to radians.
 - A. $\frac{2\pi}{3}$

B. $\frac{5\pi}{6}$

C. $\frac{3\pi}{2}$


D. $\frac{6\pi}{5}$

- 93. Determine the amplitude of $y = -2 \sin 4\left(x \frac{\pi}{3}\right) + 3$.
 - A. -2


B. 2

C. 3

- D. 4
- 94. A circle has a radius of 4 cm. If the length of arc AB shown on the diagram is 3π cm, determine the measure of the central angle θ in radians.
 - A. $\frac{3\pi}{4}$
 - B. $\frac{4}{3\pi}$
 - C. $\frac{3\pi}{2}$
 - D. 3π

- 95. A wheel with diameter 10 cm is rolling along the ground. Point P on the edge of the wheel is on the ground as shown in the diagram at the time *t* = 0 seconds. Which equation gives the height, *h*, of point P above the ground at time *t* seconds, if the wheel rotates once every 12 seconds?
 - A. $h = -5\cos\frac{\pi}{12}t$
 - $B. \quad h = -5\cos\frac{\pi}{6}t$
 - C. $h = -5\cos\frac{\pi}{12}t + 5$
 - D. $h = -5\cos\frac{\pi}{6}t + 5$

- 96. The point (p, q) is the point of intersection of the terminal arm of angle θ in standard position and the unit circle centred at (0, 0). Which expression represents $\sec \theta$?
 - A. q

В. р

C. $\frac{1}{a}$

D. $\frac{1}{p}$

- 97. Determine the equations of the asymptotes of the function $y = \tan bx$, where b > 0.
 - A. $x = \frac{n\pi}{h}$, *n* is an integer

- B. $x = \frac{n\pi}{2h}$, *n* is an integer
- C. $x = \frac{\pi}{h} + \frac{n\pi}{h}$, *n* is an integer
- D. $x = \frac{\pi}{2h} + \frac{n\pi}{h}$, *n* is an integer

JAN 2004

- 98. Convert $\frac{8\pi}{3}$ radians to degrees.
 - A. 60°

- B. 120°
- C. 240°
- D. 480°
- 99. Determine the minimum value of the function $y = -3 \sin 2x + 4$.
 - A. -7

B. -3

C. -1

D. 1

- 100. Determine the exact value of $\sec \frac{5\pi}{4}$.

 - A. $-\sqrt{2}$ B. $-\frac{1}{\sqrt{2}}$ C. $\frac{1}{\sqrt{2}}$

- D. $\sqrt{2}$
- 101. The terminal arm of angle θ , in standard position, passes through the point (-2, 9). Determine the value of $\sin \theta$.
 - A. $\frac{-2}{\sqrt{77}}$
- B. $\frac{9}{77}$
- C. $\frac{-2}{\sqrt{85}}$
- D. $\frac{9}{\sqrt{85}}$
- 102. In a seaport, the function $d(t) = 2.6 \sin 0.25(t-5) + 3.3$ can be used to approximate the depth of the water, d metres, at time t hours after midnight. Estimate the number of hours in the 24-hour interval at t=0 when the depth of the water is at least 3.5 metres.
 - A. 5.31 h
- B. 11.95 h
- C. 17.26 h
- D. 23.90 h

JUN 2004

- 103. Determine the exact value of $\cos \frac{7\pi}{4}$.
 - A. $\frac{1}{\sqrt{2}}$
- B. $\frac{\sqrt{3}}{2}$
- c. $-\frac{\sqrt{3}}{2}$
- D. $-\frac{1}{\sqrt{2}}$

- 104. In a circle with radius 12 cm an arc of length 20 cm subtends a central angle of θ . Determine the measure of θ in radians.
 - A. 0.60
- B. 1.20
- C. 1.67
- D. 3.33

- 105. Solve: $7 \tan x = -3$, $0 \le x < 2\pi$
 - A. 2.74, 3.55
- B. 2.74, 5.88
- C. 0.40, 3.55
- D. 0.40, 5.88

- 106. Give the period of $f(x) = 3 \csc x$.
 - A. $\frac{\pi}{3}$

Β. π

C. 2π

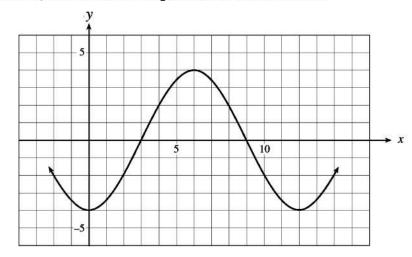
- D. 3π
- 107. Let θ be an angle in standard position such that $\tan \theta = \frac{2}{3}$ and $\sin \theta < 0$. Determine the exact value of $\sec \theta$.
 - A. $-\frac{\sqrt{13}}{2}$
- B. $-\frac{\sqrt{13}}{3}$ C. $\frac{\sqrt{13}}{3}$ D. $\frac{\sqrt{13}}{2}$

- 108. For the function $f(x) = 3 \sin bx + d$ where b and d are positive constants, determine an expression for the smallest positive value of x that produces the maximum value of f(x).
 - A. $\frac{2\pi}{h}$

- B. $\frac{\pi}{2h}$ C. $\frac{4\pi}{h}$
- D. $\frac{\pi}{4h}$

AUG 2005

- 109. Determine the amplitude of $y = -2\cos x 3$.
 - A. -3

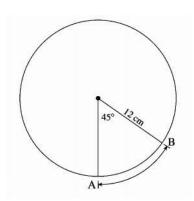

- **B.** −2
- C. 2

D. 3

- 110. Evaluate: $\sec \frac{4\pi}{3}$
 - **A.** -2
- B. $-\frac{2}{\sqrt{3}}$
- C. $\frac{2}{\sqrt{3}}$

- 111. If $\frac{\pi}{2} \le \theta \le \frac{3\pi}{2}$ and $\tan \theta = -\frac{4}{3}$, determine the exact value of $\sin \theta$
 - A. $-\frac{4}{5}$ B. $-\frac{3}{5}$ C. $\frac{3}{5}$

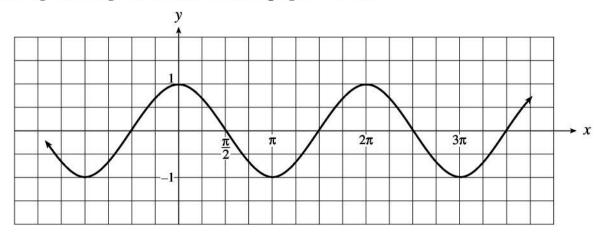
- D. $\frac{4}{5}$
- 112. Given the graph below, determine an equation of this function.


- A. $y = -4\cos\frac{\pi}{6}x$ B. $y = 4\cos\frac{\pi}{6}x$ C. $y = -4\cos\frac{\pi}{12}x$ D. $y = 4\cos\frac{\pi}{12}x$

- 113. Determine the reference angle for $\frac{7\pi}{5}$.
 - A. $\frac{\pi}{5}$

- B. $\frac{2\pi}{5}$ C. $\frac{3\pi}{5}$
- D. $\frac{4\pi}{5}$

AUG 2006


- 114. A circle has a radius of 12 cm. If the central angle is 45°, as shown in the diagram, determine the length of arc AB.
 - A. 2π cm
 - B. 3π cm
 - C. 4π cm
 - D. 6π cm

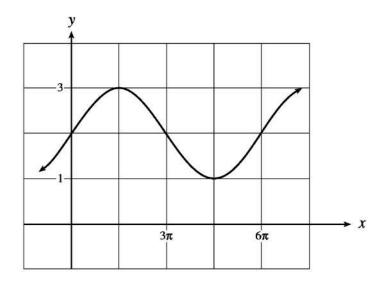
- 115. Determine the amplitude of the function $y = -4\cos(x-2)$.
 - A. -4 B. -2

C. 2

116. Which equation represents the function graphed below?

A.
$$y = \cos\left(x + \frac{\pi}{2}\right)$$

$$C. \quad y = -\cos\left(x - \frac{\pi}{2}\right)$$


B.
$$y = \sin\left(x - \frac{\pi}{2}\right)$$

D.
$$y = -\sin\left(x - \frac{\pi}{2}\right)$$

117. If the graph of the function shown below has the equation $y = a \sin bx + d$, determine the value of b. (b > 0)

C.
$$2\pi$$

118. Let θ be an angle in standard position such that $\cot \theta = -\frac{4}{3}$ and $\sin \theta < 0$. Determine the exact value of $\sec \theta$.

A.
$$-\frac{5}{3}$$

B.
$$-\frac{5}{4}$$
 C. $\frac{5}{4}$ D. $\frac{5}{3}$

C.
$$\frac{5}{4}$$

D.
$$\frac{5}{3}$$

119. A wheel rolling along the ground has a diameter of 16 cm and rotates every 12 seconds. At time t = 0 seconds, a point P on the outside edge of the wheel is at its highest point. Determine a cosine function that gives the height, h, of point P above the ground at any time t, where h is in cm and t is in seconds.

A.
$$h(t) = -8\cos\frac{\pi}{6}t + 8$$

B.
$$h(t) = 8\cos\frac{\pi}{12}t + 8$$

$$C. \quad h(t) = 8\cos\frac{\pi}{6}t + 8$$

D.
$$h(t) = -8\cos\frac{\pi}{12}t + 8$$

SAMPLE 2008

120. Evaluate: $\tan \frac{5\pi}{3}$

A.
$$-\frac{1}{\sqrt{3}}$$
 B. $\frac{1}{\sqrt{3}}$

B.
$$\frac{1}{\sqrt{3}}$$

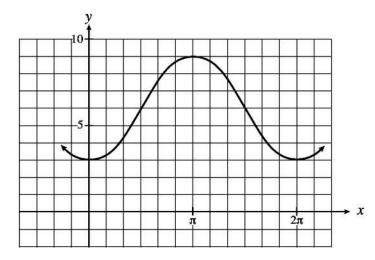
C.
$$-\sqrt{3}$$

D.
$$\sqrt{3}$$

121. Determine the period of the function $y = 3\cos\frac{\pi}{4}x$

A.
$$\frac{\pi}{4}$$

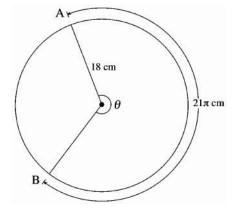
B.
$$\frac{\pi}{2}$$


122. The terminal arm of angle θ in standard position intersects the unit circle at (m, n). Which expression represents $\cot \theta$?

C.
$$\frac{n}{m}$$

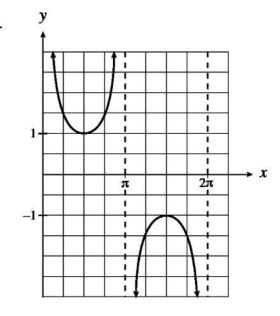
D.
$$\frac{m}{n}$$

123. If the graph of the function shown below has the equation $y = a \cos b(x - c) + d$, determine the value of d

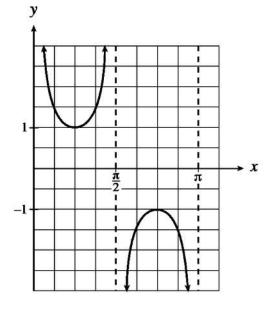


- 124. Determine an equation of an asymptote of $y = \sec 3x$.
- A. $x = \frac{\pi}{6}$ B. $x = \frac{\pi}{3}$ C. $x = \frac{2\pi}{3}$
- D. $x = \pi$
- 125. The height above the ground, *h* metres, of a person on a Ferris Wheel at time *t* seconds, is given by formula $h(t) = -20\cos\frac{2\pi}{40}t + 23$, where $t \ge 0$. Determine the earliest time, in seconds, at which the person will be 15 m above the ground.
 - A. 7.38
- B. 12.62
- C. 32.62
- D. 37.14
- 126. A circle has a radius of 18 cm. If the length of arc AB is 21π cm, determine the measure of the central angle θ in degrees.

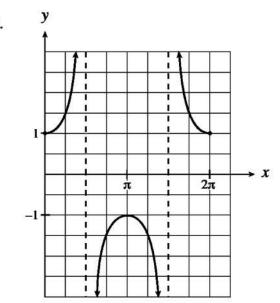
- B. 150°
- C. 210°
- D. 240°

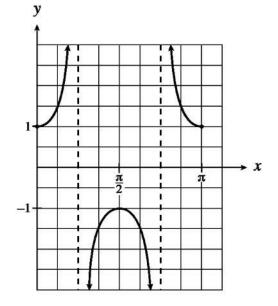

127. A minimum value of a sinusoidal function is at $\left(\frac{\pi}{4}, 3\right)$. The nearest maximum value to the right of this point is at $\left(\frac{7\pi}{12}, 7\right)$. Determine an equation of this function.

- 128. Determine the amplitude of the function $y = -4\cos(x-2)$
 - A. -4 B. -2

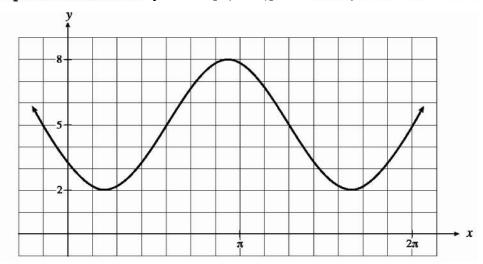

- D. 4
- 129. The terminal arm of angle θ in standard position intersects the unit circle at the point (m, n). Which expression represents $\tan \theta$?
 - A. $\frac{n}{m}$

- C. $\frac{1}{m}$
- D. $\frac{1}{n}$


- 130. Determine the exact value of $\csc \frac{7\pi}{4}$.
 - A. $-\sqrt{2}$ B. $\sqrt{2}$
- C. $-\frac{1}{\sqrt{2}}$ D. $\frac{1}{\sqrt{2}}$
- 131. In a circle, and arc of length 30 cm contains a cenral angle of 120°. Determine the radius of this circle.
 - A. $\frac{36}{\pi}$ cm B. $\frac{45}{\pi}$ cm C. 20π cm
- D. 45π cm
- 132. Which of the following is the graph of one period of the function $y = \sec 2x$?
 - A.



B.



C.

133. Given the graph of the function $y = a \sin[b(x - c)] + d$ below, determine the value of b.

- A. $\frac{10\pi}{7}$

C. $\frac{5\pi}{7}$

D. $\frac{14}{5}$

134. The point (5, -6) is on the terminal arm of standard position angle θ . Determine the smallest positive measure of θ in radians.

- A. 0.69
- B. 0.88
- C. 541
- D. 5.59

135. At a seaport, the water has a maximum depth of 16 m at midnight. After the maximum depth, the first minimum depth of 4 m occurs 5.8 h later. Assume that the relation between the depth in metres and the time in hours is a sinusoidal function. How many hours after midnight will be the water reach a depth of 8 m for the first time?

- A. 1.76
- B. 2.27
- C. 3.53
- D. 3.67

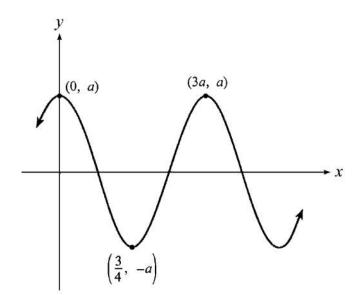
ADDITIONAL QUESTIONS

136. What is the reference angle of $\frac{16\pi}{3}$ radians?

A. $\frac{\pi}{6}$

- B. $\frac{\pi}{3}$ C. $\frac{2\pi}{3}$
- D. $\frac{4\pi}{3}$

137. Determine the smallest positive angle θ , in radians, that $\csc \theta = -\sqrt{2}$.


A. $\frac{\pi}{4}$

- B. $\frac{3\pi}{4}$
- C. $\frac{5\pi}{4}$
- D. $\frac{7\pi}{4}$

- 138. A circle has a radius of 12 cm. Determine the area of a sector (pie-shaped region) of the circle which has a central angle of 2.1 radians. (accurate to 1 decimal place)
 - A. 25.2 cm²
- B. 151.2 cm² C. 215.4 cm²
- D. 302.4 cm^2
- 139. The smallest positive zero of the function $y = \cos k \left(x + \frac{\pi}{8} \right)$ occurs at $x = \frac{\pi}{2}$. Find the value of k if k > 0.
 - A. $\frac{\pi}{2}$
- B. $\frac{3\pi}{8}$
- C. $\frac{4}{5}$
- 140. A cosine curve has a maximum point at (3, 20) and the nearest minimum point to the right of this point is (8, 4). Which of the following is an equation for this curve?
 - A. $y = 8 \cos \left[\frac{2\pi}{5} (x+3) \right] + 12$
- B. $y = 8\cos\left[\frac{2\pi}{5}(x-3)\right] + 12$ D. $y = 8\cos\left[\frac{\pi}{5}(x-3)\right] + 12$
- C. $y = 8 \cos \left[\frac{\pi}{5} (x+3) \right] + 12$

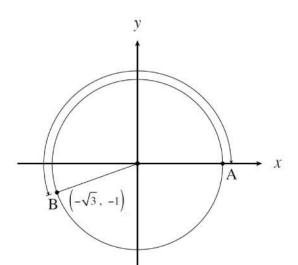
- 141. If the point (1,2) lies on the terminal arm of an angle θ in standard position, determine the value of $\cos(\pi + \theta)$.
 - A. $\frac{-2}{\sqrt{5}}$
- B. $\frac{-1}{\sqrt{5}}$
- C. $\frac{1}{\sqrt{5}}$
- D. $\frac{2}{\sqrt{5}}$
- 142. Given the graph of $y = a \cos kx$ as shown, determine a.
 - A. $\frac{1}{2}$
 - B. 1

 - D. 3

- 143. If $\sum_{k=1}^{\infty} (\sin x)^{k-1} = 6$, determine x to the nearest degree.
 - A. 36°

B. 46°

C. 56°


D. 66°

SAMPLE 2009

- 144. Convert $\frac{5\pi}{2}$ radians to degrees.
 - A. 90°

- B. 180°
- C. 270°
- D. 450°
- 145. A circle has a radius of 20 cm. Determine the length of the arc subtended by a central angle of 135°.
 - A. $\frac{3\pi}{4}$ cm B. 5π cm C. 15π cm
- D. $\frac{80}{3\pi}$ cm
- 146. The terminal arm of angle θ in standard position passes through the point $(-\sqrt{3}, -1)$. Determine the length of arc AB, as shown below.

 - C. $\frac{7\pi}{3}$
 - D. $\frac{8\pi}{3}$

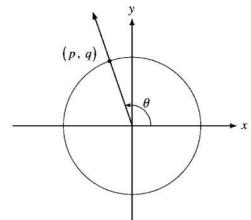
- 147. Evaluate: $\sec \frac{4\pi}{3}$
 - A. -2
- B. $-\frac{2}{\sqrt{3}}$
- c. $\frac{2}{\sqrt{3}}$

- 148. Determine the exact value of $\tan \frac{8\pi}{3}$.

 - A. $-\sqrt{3}$ B. $-\frac{1}{\sqrt{3}}$ C. $\frac{1}{\sqrt{3}}$

D. $\sqrt{3}$

- 149. Determine the exact value of $\sin\left(-\frac{3\pi}{4}\right)$.


 - A. $-\sqrt{2}$ B. $-\frac{1}{\sqrt{2}}$
- C. $\frac{1}{\sqrt{2}}$

D. $\sqrt{2}$

- 150. Solve: $\csc x = 2$, $0 \le x < 2\pi$

 - A. $x = \frac{\pi}{6}, \frac{5\pi}{6}$ B. $x = \frac{\pi}{6}, \frac{11\pi}{6}$ C. $x = \frac{\pi}{3}, \frac{2\pi}{3}$ D. $x = \frac{\pi}{3}, \frac{4\pi}{3}$

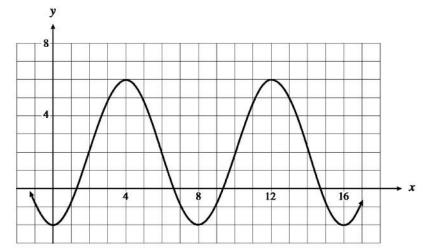
- 151. The point (p, q) is the point of intersection of the terminal arm of angle of angle θ in standard position and the unit circle as shown in the diagram. Which expression represents $\tan \theta$?
 - A. p
 - B. *q*
 - C. $\frac{p}{q}$
 - D. $\frac{q}{p}$

- 152. The terminal arm of angle θ in standard position passes through the point (-2, 5). Determine the value of $\sec \theta$.
- A. $-\frac{\sqrt{21}}{2}$ B. $\frac{\sqrt{21}}{5}$ C. $-\frac{\sqrt{29}}{2}$ D. $\frac{\sqrt{29}}{5}$
- 153. Point M (-a, b) is in quadrant 2 and lies on the terminal arm of angle θ in standard position. Point N is the point of intersection of the terminal arm of angle θ and the unit circle centred at (0, 0). Determine the x-coordinate of point N in terms of a and b.
 - A. $\frac{-a}{\sqrt{a^2 + b^2}}$

- B. $\frac{-b}{\sqrt{a^2+b^2}}$ C. $\frac{a}{\sqrt{a^2+b^2}}$ D. $\frac{b}{\sqrt{a^2+b^2}}$

- 154. Determine the amplitude of $y = -3\cos 4x + 2$.
 - A. -4

B. -3

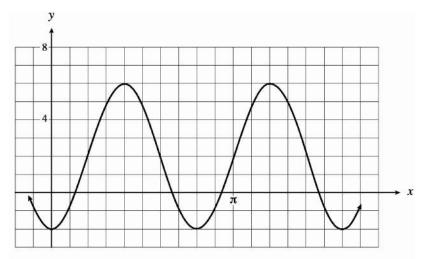

C. 3

D. 4

- 155. Determine the period of $y = \sin \left[\frac{2\pi}{3} (x 6) \right]$.
 - A. 3
- B. 6
- C. $\frac{2\pi}{3}$
- D. $\frac{4\pi}{3}$
- 156. Determine the range of the function $y = 6\cos\left[\frac{1}{2}(x-3)\right] + 4$.

- A. $-6 \le y \le 6$ B. $1 \le y \le 7$ C. $-4 \le y \le 4$ D. $-2 \le y \le 10$
- 157. Which of the following lines is an asymptote for the graph of $y = \csc 2x$?
 - A. x = 1

- B. $x = \frac{\pi}{4}$ C. $x = \frac{\pi}{2}$ D. $x = \frac{3\pi}{4}$
- 158. If the graph of the function shown below has the equation $y = a \sin[b(x c)] + d$, determine the value of b. (b > 0)


A. 4

B. 8

C. $\frac{\pi}{4}$

D. $\frac{\pi}{8}$

159. If the graph of the function shown below has the equation $y = a \sin b(x - c) + d$, determine the value of b. (b > 0)

A. $\frac{5}{4}$

- D. $\frac{4\pi}{5}$
- 160. State the phase shift of the function: $y = -\cos\left(4x \frac{\pi}{2}\right)$
 - A. $\frac{\pi}{8}$ to the right B. $\frac{\pi}{8}$ to the left C. $\frac{\pi}{2}$ to the right D. $\frac{\pi}{2}$ to the left

- 161. Determine the domain of: $f(x) = \tan 2x$
 - A. $x \in R$

- B. $x \in R$, $x \neq \frac{\pi}{4} + \frac{n\pi}{2}$, *n* is an integer
- C. $x \in R$, $x \neq \frac{\pi}{2} + n\pi$, *n* is an integer D. $x \in R$, $x \neq \pi + 2n\pi$, *n* is an integer
- 162. At a seaport, the depth of the water, d, in metres, at time t hours, during a certain day is $d = 3.4 \sin \left[2\pi \frac{(t - 7.00)}{10.6} \right] + 4.8$ On that day, determine the depth of the water at 6:30 pm.
 - A. 3.43 m
- B. 3.81 m
- C. 4.80 m
- D. 6.53 m

163. A wheel with radius 20 cm has its centre 30 cm above the ground. It rotates once every 15 seconds. Determine an equation for the height, h, above the ground of a point on the wheel at time, t seconds if this point has a maximum height at t = 2 seconds.

A.
$$h = 20\cos\left[\frac{2\pi}{15}(t+2)\right] + 30$$

B.
$$h = 20 \cos \left[\frac{2\pi}{15} (t-2) \right] + 30$$

C.
$$h = 30 \cos \left[\frac{2\pi}{15} (t+2) \right] + 20$$

D.
$$h = 30 \cos \left[\frac{2\pi}{15} (t-2) \right] + 20$$

- 164. A Ferris wheel with a diameter of 60 m rotates once every 48 seconds. At time t = 0, a rider is at his lowert height which is 2 m above the ground.
 - a) Determine a sinusoidal equation that gives the height, h, of the rider above the ground as a function of the elapsed time, t, where h is in metres and t is in seconds.
 - b) Determine the time t when the rider will be 38 m above the ground for the first time after t = 0.
- 165. A mass is supported by a spring so that it rests 50 cm above a table top, as shown in the diagram below. The mass is pulled down to a height of 20 cm above the tabletop and released at time t = 0.

It takes 0.8 seconds for the mass to reach a maximum height of 80 cm above the tabletop. As the mass moves up and down, , its height h, in cm above the tabletop, is approximated by a sinusoidal function of the elapsed time, t, in seconds, for a short period of time.

Determine an equation for a sinusoidal function that gives h as a function of t.

table top