TRIGONOMETRY I REVIEW

In all possible cases, exact values should be used. Radian measures which are not exact should be to three decimal places. Otherwise answers should be to 2 decimal places.

1. Convert to radians:

	a) 105°	b) 400°	c) 40°	d) 10°	
2.	Convert to degrees:				
	a) $\frac{13\pi}{12}$	b) 0.800	c) -7.500	(d) $\frac{7\pi}{5}$	
3.	Determine the reference a	angle for:			
	a) $\frac{7\pi}{5}$	b	b) -1.000		
4.	Find 2 coterminal angles for each of the above (in question 3)				
	a)	b)		

- 5. A fan at high speed is turning at 220 rpm. Convert this speed to radians per second.
- 6. The earth has a radius of 6.38×10^6 m, and completes one full rotation about its axis every 24 hours.
 - a) Determine your angular speed.
 - b) How far will you travel in one minute?
- 7. Find the diameter of a pizza slice with central angle of 1.50 radians and area of 170 cm².
- 8. The terminal angle of an angle θ in standard position passes through the point (3, -8). Determine:

$\sin heta$	$\csc heta$
$\cos \theta$	$\sec \theta$
$\tan \theta$	$\cot heta$
$\theta(0 < \theta < 2\pi)$	

- 9. If $\csc \theta = -\frac{5}{4}$, and θ lies in quadrant III, determine $\cos \theta$.
- 10. Complete the table with exact trig ratios:

	$\frac{2\pi}{3}$	$\frac{5\pi}{4}$	$\frac{3\pi}{2}$	$\frac{5\pi}{3}$
$\sin\theta$				
$\cos \theta$				
$\tan \theta$				
$\csc \theta$				
$\sec \theta$				
$\cot\theta$				

11. Solve, $0 \le \theta < 2\pi$: a) $\sin \theta = -\frac{1}{\sqrt{2}}$	b) $\cot \theta = \sqrt{3}$	
c) $\sec \theta = -2$	d) $\sin\theta = 0.600$	
e) $\tan \theta = 2.5$	f) $\cos \theta = 0.825$	
g) $\csc\theta = -\frac{2}{\sqrt{3}}$	h) $\csc\theta = 0$	
i) $\cos \theta = -1$	j) $\sec^2\theta = 2$	

	Amplitude	Period	Phase shift	Vertical displacement
a) $y = -3\sin\left(2x + \frac{\pi}{3}\right) - 5$				
b) $y = \sin\left(0.75\left(\theta - \frac{\pi}{4}\right)\right)$				
c) $y = -20\cos\left(\frac{2\pi}{120}(t+7)\right) + 10$				
d) $y = 2 \tan 2x$				

12. For each of the following functions, state the amplitude, period, phase shift and vertical displacement:

13. Determine the equation of the sinusoidal function which has a minimum at (3, -5) and rises to the next nearest maximum at (21, 7).

14. Determine the equation of the cosine function with the amplitude 2, period 5π , phase shift $\frac{\pi}{12}$ and vertical displacement -8.

For the next two questions, determine two possible equations to represent each function shown: (3 marks each)

17. The number of people skiing/snowboarding (P) at any time on a ski mountain can be modeled by a sinusoidal function. At 9:00 am there are 150 skiers on the hill, which is the minimum. The number of skiers peaks 7 hours later when there are 1050 skiers on the hill. The function is valid until 9:00 pm, when the hill shuts down for the night.

a) Sketch a graph of this function.

- b) Determine an equation to represent this function, where *t* is the time in hours (midnight is zero hours, 9:00 p.m. is 21:00), and the hill is open from 9:00 am to 9:00 pm.
- c) What is the earliest time (after 9:00 am) at which there will be 600 people on the mountain?
- d) How many people are on the mountain at 12:00 noon?
- d) For what time period(s) are there more than 800 skiers on the hill? (intended to require graphing technology).
- 18. Using graph paper, sketch at least one complete period of the functions in question 12.