AP CALCULUS **PRETEST**

USE CALCULATORS ONLY WHEN ABSOLUTELY NECESSARY.

Determine an equation for each line:

y-intercept of -4 and slope of $\frac{5}{3}$

slope of -2.5 and passes through (2,3)

passes through (-1, 2) and (7, 0)

Factor Completely:

4.
$$2(3y-5)^2-7(3y-5)-15$$

5.
$$x^6 - 27$$

6.
$$625x^4 - 1$$

- Find the annual per cent growth that would increase an amount by 7. a factor of five in ten years.

8. Simplify:
$$a^2 + a + 1 - \frac{a^3}{a-1}$$

9. Simplify:
$$\frac{\sqrt{5} + 2\sqrt{3}}{\sqrt{5} - 2\sqrt{3}}$$

10. Solve for *z* if
$$2x + 2yz + y + xz = 0$$
.

11. A child 1.4 m tall is walking away (on level ground) from a 4 m high streetlight. Express the length of her shadow
$$D$$
 as a function of her distance from the base of the light L .

12. Evaluate
$$\frac{3^x + 3^y}{3^{xy}}$$
 if $x = 2$ and $y = -2$.

13. If
$$f(x) = 2x + 1$$
 and $g(x) = \frac{x - 1}{2}$, then find: $f[g(x)]$

14. Find
$$f^{-1}(x)$$
 given $f(x) = x^2 - 12x + 21$.

15.	An amount of water at room temperature is placed in a kettle. In 8 minutes the kettle comes to a boil. If T_p is the temperature of the water in the kettle t minutes after it was plugged in, then sketch a possible graph of $T_p = f(t)$ for $t \ge 0$	15. <u> </u>	
16.	A box with a square base has a volume of 800^3 . If the length of one of the sides of the base is x , determine an expression for the total surface area of the box.	16	
17.	The height h of a stone thrown straight up with a velocity of 12 m/sec is given by the relation $h = -5t^2 + 12t$. What is the maximum height the stone will reach?	17	
18.	A parallelogram has two adjacent sides of 10cm and 15cm. It also has an acute angle of 60°. What is the length of the longer diagonal? Answer exactly.	18	
19.	Determine the area of the parallelogram in the question above.	19.	
20.	Determine the slope of the terminal arm of a 150° standard position angle.	20	

21. Determine the area of the triangle formed by the *x*-axis and the lines $y = \frac{1}{3}x + 1$ and y = -x + 5.

22. A small tank is in the form of an inverted right circular cone. The diameter of a cone is 24 cm. When filled to a height of 10 cm, the volume of water in the cone is 30π cubic centimetres. How much more water is required to fill the cone? $V = \frac{1}{3}\pi r^2 h$

23. A 20 m ladder and a 15 m ladder are both leaning against a building. The bottom of the longer ladder is 7 m farther from the building than the bottom of the short ladder, but both ladders reach the same distance up the building. Determine this distance.

24. Determine a polynomial equation of lowest degree that has integral coefficients and roots -2, 0 and 5.

25. Determine a fourth degree polynomial equation that has integral coefficients and the same roots as the question above.

26. Solve $x^3 + x^2 - 9x - 9 < 0$.

