AP CALCULUS PROBLEM SETS #10 INTEGRATION RATES AND MODELLING ANSWER KEY

- 1. a) G'(5) = -24.588 The rate at which gravel is arriving is decreasing by 24.588 tons per hour at time t = 5 hours.
 - b) 825.551 tons
 - c) G(5) = 98.140764 < 100 The rate at which gravel is arriving is less than the rate at which it is being processed. Therefore the amount of unprocessed gravel is decreasing at time t = 5.
 - d) 635.376 tons/hour
- 2. a) 6004
 - b) \$104 041, \$104 048
 - c) H'(17) = -380.281. There were 3725 people in the park at t = 17, and the number was decreasing at 380 people/hr.
 - d) t = 15.794
- 3. a) 258.6 gallons
 - b) yes Mean Value Theorem
 - c) 10.785 gallons/hr
- 4. a) 2474 cars
 - b) F'(7) = -1.872, decreasing
 - c) 81.899 cars/min
 - d) 1.517 cars/min²
- 5. a) 31.815 yd³
 - b) $Y(t) = 2500 + \int_0^t ((S(x) R(x))dx$
 - c) $Y'(4) = -1.909 \text{ yd}^3/\text{min}$
 - d) min at t = 5.117 is 2492.369 yd³

- 6. a) 8264 gal.
 - b) decreasing on [0, 1.617] and [3, 5.076]
 - c) abs. max at 3 hours, 5127 gal.
- 7. a) 142.274 ft³
 - b) -59.582 ft³/hr

c)
$$h(t) = \begin{cases} 0, & 0 \le t \le 6 \\ 125(t-6), & 6 < t \le 7 \\ 125 + 108(t-7), & 7 < t \le 9 \end{cases}$$

- d) 26.334 ft³
- 8. b) $T_{avg} = 87^{\circ}$
 - c) $5.2309 \le T \le 18.7691$
 - d) \$5.10
- 9. a) $\frac{dh}{dt} = 0.038$ cm/min
 - b) Max. volume at t = 25 min.
 - c) $V(25) = 60000 + \int_0^{25} (2000 R(t))dt$
- 10. a) $\frac{14}{3}$ gallons
 - b) $\frac{148}{3}$ gallons
 - c) $A(t) = 30 + 8t \int_0^t \sqrt{x+1} \ dx$

or
$$8t - \frac{2}{3}(t+1)^{3/2} + \frac{92}{3}$$

- d) t = 63 minutes
- 11. a) 3200 people
 - b) increasing
 - c) longest line at t = 3, 1500 people
 - d) $0 = 700 + \int_0^t r(s)ds 800t$