AP CALCULUS PROBLEM SET #11 INTEGRATION III FTC ANSWER KEY

1. a) Inflection points at
$$x = -2$$
 and $x = 0$

b)
$$f(-4) = 5 + \int_0^{-4} g(x) dx = 2\pi - 3$$

 $f(4) = 5 + \int_0^4 \left(5e^{-x/3} - 3\right) dx = 8 - 15e^{-4/3}$

c) Abs. maximum at
$$x = 3 \ln \left(\frac{5}{3} \right)$$

2. a)
$$g(3) = 5 + \int_0^3 g'(x) dx = \frac{13}{2} + \pi$$

 $f(-2) = 5 + \int_0^{-2} g'(x) dx = 5 - \pi$

- b) Inflection points at x = 0, 2 and 3
- c) h'(x) = g'(x) x = 0 when $x = \sqrt{2}$ and x = 3h has a relative max at $x = \sqrt{2}$, and neither a maximum nor minimum at x = 3

3. a) Relative maximum at x = 2

c)
$$g'(x) = f(x) = 0$$
 at $x = 1, 3$
g has rel. min. at $x = 1$,
rel. max. at $x = 3$

d) g has an inflection point at x = 2.

4. a)
$$g(0) = 4.5$$
, $g'(0) = 1$

b) g has rel. max. at
$$x = 3$$

c) g has abs. min. at
$$x = -4$$
, $g = -1$

d)
$$x = -3, 1, 2$$

5. a)
$$f$$
 is increasing on $[-3,-2]$

b)
$$x = 0$$
 and $x = 2$

c)
$$y = -2x + 3$$

d)
$$f(-3) = 9/2$$
, $f(4) = -5 + 2\pi$

6. a)
$$6\pi^2 - \left[2\sin\left(\frac{x}{2}\right)\right]_{x=-2\pi}^{x=4\pi} = 6\pi^2$$

b)
$$f'(x) = g'(x) + \frac{1}{2}\sin\left(\frac{x}{2}\right)$$

= $\begin{cases} 1 + \frac{1}{2}\sin\left(\frac{x}{2}\right) & \text{for } -2\pi < x < 0 \\ -\frac{1}{2} + \frac{1}{2}\sin\left(\frac{x}{2}\right) & \text{for } 0 < x < 4\pi \end{cases}$

f'(x) does not exist at x = 0.

For
$$-2\pi < x < 0$$
, $f'(x) \neq 0$.

For $0 < x < 4\pi$, f'(x) = 0 when $x = \pi$.

f has critical points at x = 0 and $x = \pi$.

c)
$$h'(x) = g(3x) \cdot 3$$

 $h'\left(-\frac{\pi}{3}\right) = 3g(-\pi) = 3\pi$

7. a)
$$g(4) = 3$$
, $g'(4) = 0$, $g''(4) = -2$

b) g has rel. min. at
$$x = -1$$

c) at
$$x = 108$$
, $y - 44 = 2(x - 108)$

8. a)
$$g(-1) = -1.5$$
, $g'(-1) = 0$, $g''(-1) = 3$

- b) g is increasing on $-1 \le x \le 1$ since $g'(x) = f(x) \ge 0$
- c) g is concave down on $0 \le x \le 2$ since $g''(x) = f'(x) \le 0$

9. a) i)
$$5x^3 + 40 = \int_c^x f(t)dt$$

 $15x^2 = f(x) : f(t) = 15t^2$
ii) $5x^3 + 40 = \int_c^x 15t^2 dt$
 $= 5t^3 \Big]_c^x = 5x^3 - 5c^3$
 $-5c^3 = 40, : c = -2$
b) $F(x) = \int_x^3 \sqrt{1 + t^{16}} dt = -\int_3^x \sqrt{1 + t^{16}} dt$

$$F'(x) = -\sqrt{1 + x^{16}}$$
10. a) $0 \le \left(\frac{x}{2} + 3\right) \le 5$

b)
$$h'(x) = f\left(\frac{x}{2} + 3\right)\left(\frac{1}{2}\right)$$

 $h'(2) = f\left(4\right)\left(\frac{1}{2}\right) = -\frac{3}{2}$

 $-6 \le x \le 4$

c)
$$h(-6) = \int_0^0 f(t)dt = 0$$

 $h(4) = \int_0^5 f(t)dt < 0$

Since area below x axis is greater than the area above, min @ x = 4.

11 a) f has a relative minimum at 1.

b) By the Mean Value Theorem, there is at least one value $c, -1 \le c \le 1$, such that f''(c) = 0.

c)
$$h'(x) = \frac{1}{f(x)} f'(x)$$

 $h'(3) = \frac{1}{f(3)} (f'(3)) = (\frac{1}{7}) (\frac{1}{2}) = \frac{1}{14}$

d)
$$\int_{-2}^{3} f'(g(x))g'(x)dx = [f(g(x))]_{-2}^{3}$$
$$= f(g(3)) - f(g(-2))$$
$$= f(1) - f(-1) = 2 - 8 = -6$$