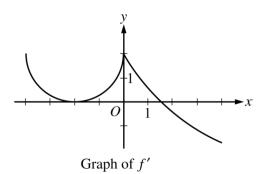
AP CALCULUS PROBLEM SET #11 INTEGRATION III FTC

(2009-6) 1.

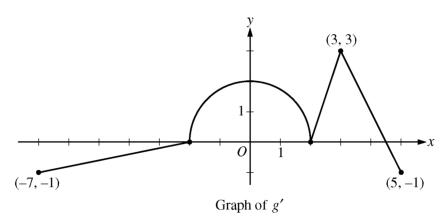


The derivative of a function f is defined by $f'(x) = \begin{cases} g(x) & \text{for } -4 \le x \le 0 \\ 5e^{-x/3} - 3 & \text{for } 0 < x \le 4 \end{cases}$.

The graph of the continuous function f'(x), shown in the figure above, has x-intercepts at x = -2 and $x = 3 \ln \left(\frac{5}{3}\right)$. The graph of g on $-4 \le x \le 0$ consists of a semi-circle, and f(0) = 5.

- (a) For $-4 \le x \le 4$, find all values of x at which the graph of f has a point of inflection. Justify your answer.
- (b) Find f(-4) and f(4).
- (c) For $-4 \le x \le 4$, find the value of x at which f has an absolute maximum. Justify your answer.

(2010-5) 2.



The function g is

defined and

differentiable on the closed interval [-7, 5] and satisfies g(0) = 5.

The graph of y = g'(x), the derivative of g, consists of a semi-circle and three line segments as shown on the figure above.

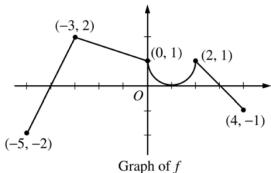
- (a) Find g(3) and g(-2).
- (b) Find the x-coordinate of each point of inflection of the graph of y = g(x) on the interval -7 < x < 5. Explain your reasoning.
- (c) The function h is defined by $h(x) = g(x) \frac{1}{2}x^2$. Find the x-coordinate of each critical point of h, where -7 < x < 5, and classify each critical point as the location of a relative minimum, relative maximum, or neither a minimum nor a maximum. Explain your reasoning.

(2005-4)	
3.	

х	0	0 < x < 1	1	1 < <i>x</i> < 2	2	2 < <i>x</i> < 3	3	3 < <i>x</i> < 4
f(x)	-1	Negative	0	Positive	2	Positive	0	Negative
f '(x)	4	Positive	0	Positive	DNE	Negative	-3	Negative
f "(x)	-2	Negative	0	Positive	DNE	Negative	0	Positive

Let f be a function that is continuous on the interval [0, 4). The function f is twice differential except at x = 2. The function f and its derivatives have the properties indicated in the table above, where DNE indicates that the derivatives of f do not exist at x = 2.

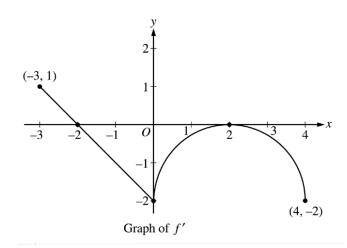
- (a) For 0 < x < 4, find all values of x at which f has a relative extremum. Determine whether f has a relative maximum or a relative minimum at each of these values. Justify your answer.
- (b) On the axes provided, sketch the graph of a function that has all the characteristics of f.
- (c) Let g be the function defined by $g(x) = \int_1^x f(t)dt$ on the open interval (0, 4). For 0 < x < 4, find all values of x at which g has a relative extremum. Determine whether g has relative maximum or a relative minimum at each of these values. Justify your answer.
- (d) For the function defined in part (c), find all values of x, for 0 < x < 4, at which the graph of g has a point of inflection. Justify your answer.



The graph of the function f shown above consists of a semicircle and three line segments. Let g be the function given by $g(x) = \int_{-3}^{x} f(t)dt$

- (a) Find g(0) and g'(0).
- (b) Find all values of x in the open interval (-5, 4) at which g attains a relative maximum. Justify your answer.
- (c) Find the absolute minimum value of g on the closed interval [-5, 4]. Justify your answer.
- (d) Find all values of x in the open interval (-5, 4). At which the graph of g has a point of inflection.

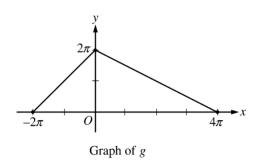
(2003-4) **5.**



Let f be a function defined on the closed interval $-3 \le x \le 4$ with f(0) = 3. The graph of f', the derivative of f, consists of one line segment and a semicircle as shown.

- (a) On what intervals, if any, is f increasing? Justify your answer.
- (b) Find the *x*-coordinate of each point of inflection of the graph of f on the open interval $-3 \le x \le 4$. Justify your answer.
- (c) Find an equation for the line tangent to the graph of f at the point (0, 3)
- (d) Find f(-3) and f(4). Show the work that leads to your answers

(2011(B)-6) **6.**



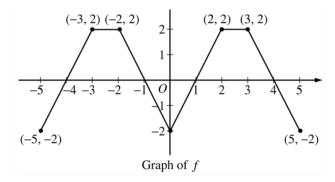
Let g be the piecewise linear function defined on $[-2\pi, 4\pi]$ whose graph is given above, and let $f(x) = g(x) - \cos\left(\frac{x}{2}\right)$

- (a) Find $\int_{-2\pi}^{4\pi} f(x)dx$. Show the computations that lead to your answer.
- (b) Find all x-values in the open interval $(-2\pi, 4\pi)$ for which f has a critical point.
- (c) Let $h(x) = \int_0^{3x} g(t)dt$. Find $h'\left(-\frac{\pi}{3}\right)$.

OPTIONAL

(2006-3)

7.

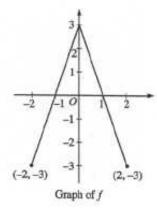


The graph of the function f shown above consists of six line segments.

Let g be the function given by $g(x) = \int_{0}^{x} f(t)dt$.

- (a) Find g(4), g'(4), g''(4).
- (b) Does g have a relative minimum, a relative maximum, or neither at x = 1? Justify your answer.
- (c) Suppose f is defined for all real numbers and is periodic with a period of length 5. The graph above shows two periods of f. Given that g(5) = 2, find g(10) and write an equation of the line tangent to the graph of g at x = 108.

(2002- 4) **8.**



The graph of the function f shown above consists of two line segments.

Let g be the function given by $g(x) = \int_{0}^{x} f(t)dt$

- (a) Find g(1), g'(1), g''(1).
- (b) For what values of x in the open interval (-2, 2) is g increasing? Explain your reasoning.
- (c) For what values of x in the open interval (-2, 2) is the graph of g concave down? Explain your reasoning.
- (d) On the axes provided, sketch the graph of g on the closed interval [-2, 2]

- (a) Given $5x^3 + 40 = \int_{c}^{x} f(t)dt$.
 - (i) Find f(x)
 - (ii) Find the value of c.

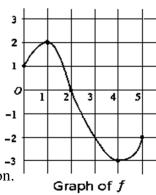
(b) If
$$F(x) = \int_{x}^{3} \sqrt{1 + t^{16}} dt$$
, find $F'(x)$.

(95BC-6)

10. Let f be a function whose domain is the closed interval [0, 5].

The graph of f is shown. Let $h(x) = \int_0^{\frac{x}{2}+3} f(t)dt$.

- (a) Find the domain of h.
- (b) Find h'(2).
- (c) At what x is h(x) a minimum? Show the analysis that leads to your conclusion.



(2014-5)

11.

,								
	x	-2	-2 < <i>x</i> < −1	-1	$-1 \le x \le 1$	1	1 < <i>x</i> < 3	3
	f(x)	12	Positive	8	Positive	2	Positive	7
	f'(x)	-5	Negative	0	Negative	0	Positive	$\frac{1}{2}$
	g(x)	-1	Negative	0	Positive	3	Positive	1
	g '(x)	2	Positive	$\frac{3}{2}$	Positive	0	Negative	-2

The twice-differentiable functions f and g are defined for all real numbers x. Values of f, f', g, and g' for various values of x are given in the table above.

- (a) Find the x-coordinate of each relative minimum of f on the interval [-2, 3]. Justify your answers.
- (b) Explain why there must be a value c, for $-1 \le c \le 1$, such that f''(c) = 0.
- (c) The function h is defined by $h(x) = \ln f(x)$. Find h'(3). Show the computations that lead to your answer.
- (d) Evaluate $\int_{-2}^{3} f'(g(x))g'(x)dx$