AP CALCULUS PROBLEM SET \#12 VOLUMES

(92-5)

1. Let f be the function given by $f(x)=e^{-x}$ and let g be the function given by $g(x)=k x$, where k is the nonzero constant such that the graph of f is tangent to the graph of g.
(a) Find the x-coordinate of the point of tangency and the value of k.
(b) Let R be the region enclosed by the y -axis and the graphs of f and g. Using the results found in part (a), determine the area of R.
(c) Set up, but do not integrate, an integral expression in terms of a single variable for the volume of the solid generated by revolving the region R, given in part (b), about the \underline{x}-axis.
(98-1)
2. Let R be the region bounded by the x-axis, the graph of $y=\sqrt{x}$, and the line $x=4$.
(a) Find the area of the region R.
(b) Find the value of h such that the vertical line $x=h$ divides the region R into two regions of equal area.
(c) Find the volume of the solid generated when R is revolved about the x-axis.
(d) The vertical line $x=k$ divides the region R into two regions such that when these two regions are revolved about the x-axis, they generate solids with equal volumes. Find the value of k.
(2001-1)
3. Let R and S be the regions in the first quadrant shown in the figure shown. The region R is bounded by the x-axis and the graphs of $y=2-x^{3}$ and $y=\tan x$. The region S is bounded by the y-axis and the graphs of $y=2-x^{3}$ and $y=\tan x$.
$\begin{array}{ll}\text { (a) Find the area of } R . & \text { (b)Find the area of } S . \\ \text { (c) Find the volume of the solid generated when } S \text { is revolved about the } x \text {-axis. }\end{array}$

(2002-1)
4. Let f and g be the functions given by $f(x)=e^{x}$ and $g(x)=\ln x$.
(a) Find the area of the region enclosed by the graphs of f and g between $x=\frac{1}{2}$ and $x=1$.
(b) Find the volume of the solid generated when the region enclosed by the graphs of f and g between $x=\frac{1}{2}$ and $x=1$ is revolved about the line $y=4$.
(c) Let h be the function given by $h(x)=f(x)-g(x)$. Find the absolute minimum value of $h(x)$ on the closed interval $\frac{1}{2} \leq x \leq 1$, and find the absolute maximum value of $h(x)$ on the closed interval $\frac{1}{2} \leq x \leq 1$. Show the analysis that leads to your answers.
5. Let R be the region in the first quadrant bounded by the graphs of $y=2 \sqrt{x}$, the horizontal line $y=6$, and the y-axis, as shown.
(a) Find the area of R.
(b) Write, but do not evaluate, an integral expression that gives the volume of the solid generated when R is rotated about the horizontal line $y=7$.

(c) Region R is the base of a solid. For each y, where $0 \leq y \leq 6$, the cross section of the solid taken perpendicular to the y-axis is a rectangle whose height is 3 times the length if its base in region R. Write, but do not evaluate, an integral expression that gives the volume of the solid.
(2008-1)
6. Let R be the region in the first quadrant bounded by the graphs of $y=\sin (\pi x)$ and $y=x^{3}-4 x$, as shown in the figure.
(a) Find the area of R.
(b) The horizontal line $y=-2$ splits the region R into two parts. Write, but do not evaluate, an integral expression for the area of the part of R that is below this horizontal line.
(c) Region R is the base of a solid. For this solid, each cross section
 of the solid taken perpendicular to the x-axis is a square. Find the volume of this solid.
(d) The region R models the surface of a small pond. At all points in R at a distance x from the y-axis, the depth of the water is given by $h(x)=3-x$. Find the volume of water in the pond.

OPTIONAL

(96-5)
7.

An oil storage tank has the shape shown above, obtained by revolving the curve $y=\frac{9}{625} x^{4}$ from $x=0$ to $x=5$ about the y-axis, where x and y are measured in feet. Oil flows into the tank at the constant rate of 8 cubic feet per minute.
(a) Find the volume of the tank. Indicate units of measure.
(b) To the nearest minute, how long would it take to fill the tank if the tank was empty initially?
(c) Let h be the depth, in feet, of oil in the tank. How fast is the depth of the oil in the tank increasing when $h=4$? Indicate units of measure.
(96BC-1)
8. Consider the graph of the function h given by $h(x)=e^{-x^{2}}$ for. $0 \leq x<\infty$

(a) Let R be the unbounded region in the first quadrant below the graph of h. Find the volume of the solid generated when R is revolved about the y-axis.
(b) Let $A(w)$ be the area of the shaded rectangle shown in the figure above. Show that $A(w)$ has its maximum when w is the x-coordinate of the point of inflection of the graph of h.
(88-3)
9. Let R be the region in the first quadrant enclosed by the hyperbola $x^{2}-y^{2}=9$, the x-axis, and the line $x=5$.
(a) Find the volume of the solid generated by revolving R about the \underline{x}-axis.
(b) Set up, but do not integrate, an integral expression in terms of a single variable for the volume of the solid generated when R is revolved about the line $x=-1$.
(2006-1)
10.

Let R be the shaded region bounded by the graphs of $y=\ln x$ and $y=x-2$, as shown above.
(a) Find the area of R.
(b) Find the volume of the solid generated when R is rotated about the horizontal line $x=-3$.
(c) Write, but do not evaluate, an integral expression that can be used to find the volume of the solid generated when R is rotated about the y-axis.

