AP PROBLEM SET \#4
 DERIVATIVES: \boldsymbol{e}, $\boldsymbol{l n}$

1. Let f be the function given by $f(x)=\ln \frac{x}{x-1}$
(a) What is the domain of f ?
(b) Find the value of the derivative of f at $x=-1$.
(c) Write an expression for $f^{-1}(x)$, where $f^{-1}(x)$ denotes the inverse function of f.
(78-2)
2. Let $f(x)=(1-x)^{2}$ for all real numbers x, and let $g(x)=\ln x$ for all $x>0$. Let $h(x)=(1-\ln x)^{2}$.
(a) Determine whether $h(x)$ is the composition $f(g(x))$ or the composition $g(f(x))$.
(b) Find $h^{\prime}(x)$.
(c) Find $h^{\prime \prime}(x)$.
(d) Sketch the graph of h.
3. Let f be the function defined by $f(x)=5^{\sqrt{2 x^{2}-1}}$
(a) Is f an even or odd function? Justify your answer.
(b) Find the domain of f.
(c) Find the range of f.
(d) Find $f^{\prime}(x)$.
(83-1)
4. Let f be the function defined by $f(x)=-2+\ln \left(x^{2}\right)$
(a) For what real numbers x is f defined?
(b) Find the zeros of f.
(c) Write an equation for the line tangent to the graph of f at $x=1$.
(75BC-7)
5.

(a) For what value of m is the line $y=m x$ tangent to the graph of $y=\ln x$?
(b) Prove that the graph of $y=\ln x$ lies entirely below the graph of the line found in (a).
(c) Use the results of (b) to show that $e^{x} \geq x^{e}$ for $x>0$.
6. Let f be a function defined by $f(x)= \begin{cases}1-2 \sin x & \text { for } x \leq 0 \\ e^{-4 x} & \text { for } x>0\end{cases}$
(a) Show that f is continuous at $x=0$.
(b) For $x \neq 0$, express $f^{\prime}(x)$ as a piecewise-defined function. Find the value of x for which $f^{\prime}(x)=-3$.
**(c) Find the average value of f on the interval $[-1,1]$.

